
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 21 (2017) pp. 10861-10866

© Research India Publications. http://www.ripublication.com

10861

Testing Sufficiency Test (TST) - Evolving a New Model for Estimating

Software Test Cases

Bishan Dayal Chauhan1, Dr. Ajay Rana2 and Dr. Neeraj Sharma3

1Research Scholar, Amity School of Engineering and Technology, Amity University, Noida UP, India.

Orcid Id: 0000-0002-6462-8572
2Professor, Amity School of Engineering and Technology, Amity University, Noida UP, India.
3Professor, Harlal Institute of Management & Technology (HIMT), Greater Noida, UP, India.

Abstract

One of the major challenges faced by project managers is to

control huge testing efforts being spent on testing of the

software, and thus controlling cost and quality of software.

For controlling cost & quality, One of the key project

objectives is to plan for optimum testing efforts, so that

software produced is of high quality, and this has to be

achieved by applying the right amount of testing efforts, if

less testing efforts are applied quality of software suffers, and

if more efforts are applied then cost of the software increases,

so it becomes very important to strike a right balance between

cost & quality of software and thus needed to arrive at

optimum amount of testing, which becomes a major

challenge for managers as it requires a good prediction model

to predict the right amount of testing. It is proven that the

software testing phase is one of the most critical and

important phases in the software development life cycle. In

general, the software-testing phase takes around 40-65% of

the effort, time and cost. This area has been well researched

over a long period of time. Unfortunately, while many

researchers have found methods of reducing time and cost of

the testing phase, there are still a number of important related

issues that need to be researched. This study introduces a new

prediction model for estimating number of required test cases

and thereby maintaining the right balance between quality &

cost, using empirical approach which establishes a

relationship between software size & testing efforts using the

defect data, productivities for various technologies can also be

used for making the testing efforts technology specific for

various projects. Predicting optimum number of required test

cases or steps and thus total efforts required for testing and

thereby controlling overall cost of quality

Keywords: Optimum Testing Efforts, Optimum Quality, Cost

Reduction, Cost of, Quality (COQ), Prediction Model,

Number of Test Cases, Test Case Estimation

INTRODUCTION

Imagine driving to an important trip to a distant place where

you have never been for. No-one in their right mind, set off to

such a journey without knowing at least the name and the

general direction of the destination. Other important

considerations are the distance and the available routes that

take you there. Armed with this information and a good map

one can feel more comfortable about taking the trip.

Managing a Software project is much harder than planning a

trip. The biggest difference is that no matter how hard you try,

challenges in predicting the right amount of testing to be done

for software so that cost and quality of end product in well in

control. There are however striking similarities. Knowing the

general direction is necessary in both the cases.

What Determines Success of a Software project

The end of a software project is generally the point at which a

project is judged to be a success or not. Typical criteria for

determining success are

 Did the project completed on time?

 Did the project completed within its budget?

 How is the quality of software?

 Is the software being developed is in good use.

Scope, Time & Cost management is critical. There are other

criteria of course; however, these are generally additional to

the critical Time, Cost and Quality criteria. In any project,

software or other, these are three conflicting factors. One

cannot for example lessen the duration without affecting cost

and/or quality. Therefore, to manage success of the project is

to keep the cost & quality in check and we are targeting this

area i.e. controlling cost of quality

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 21 (2017) pp. 10861-10866

© Research India Publications. http://www.ripublication.com

10862

What is Cost of Quality?

Cost of Quality (COQ) – is a measure of the cost of the

conformance (cost of control) & cost of Non-conformance

(Costs of failure of control)

Software Engineering – A Practitioner’s Approach – Roger S.

Pressman defines as “The cost of quality includes all costs

incurred in the pursuit of quality or in performing quality-

related activities” [1], numerous studies are done to identify

opportunities for reducing the cost of quality.

Costs of the conformance (Costs to ensure quality)

 Prevention Costs - Incurred from efforts to keep

defects from occurring at all “Do it right first time”

Example: Quality Assurance costs

 Appraisal Costs - Incurred from detecting defects

via inspection, test; audit i.e. “Did we get it right?”

Example: Quality Control costs

Costs of Non-conformance (Costs to fix poor quality)

 Internal failure costs - Incurred from

fixing/repairing defects caught internally.

o Example: Cost of Rework (Fixing of

internal defects and re-testing)

 External failure costs - Incurred from defects that

actually reach customers.

Example: Cost of Rework (Fixing of external defects

and re-testing) and any other costs due to external

defects (Product service / liability / recall, loss of

reputation, complaints in warranty & out of warranty

etc.)

Definition by ISTQB (International Software Testing

Qualifications Board): cost of quality: The total costs incurred

on quality activities and issues and often split into prevention

costs, appraisal costs, internal failure costs and external failure

costs.

Definition by QAI (Quality Assurance International): Money

spent beyond expected production costs (labor, materials, and

equipment) to ensure that the product the customer receives is

a quality (defect free) product. The Cost of Quality includes

prevention, appraisal, and correction or repair costs.

Why to measure cost of quality? “You cannot manage what

you cannot measure”

 Benchmark against peers in industry

 Articulate costs and benefits in Money terms

 CoQ provides a holistic and quantitative view of process

maturity

 Identify focus areas for software process improvement

Cost of Quality (COQ) = (1)

 Cost of Conformance

 (Prevention Cost + Appraisal Cost)

 +

 Cost of Non-Conformance

 (Internal Failure Cost + External Failure Cost)

Where

Cost of Control = Prevention Cost + Appraisal Cost

And

Cost of Failure of Control = Internal Failure Cost + External

Failure Cost

Software Testing & Size

Software sizing is an important activity in software

engineering that is used to estimate the size of a software

application or component in order to estimate other software

project characteristics like efforts, schedule, resources,

defects etc. Size is an inherent characteristic of a piece of

software just like weight is an inherent characteristic of a

tangible material. Size is not effort, it is essential to

differentiate between software sizing and software effort

estimation. Measuring the size of software is different from

measuring the effort needed to build it. Size is an independent

measure and it does not depend on technology while effort

will depend on many factors.

In general, we present size estimates as lines of code (KSLOC

or KLOC or SLOC), function points, uses case count, object

count. Selection of sizing unit depends on the nature of the

project and also the form in which requirements are presented.

There are various scientific methods for calculating the

software size that can be used based on the project type.

Example: If a software application of size 5000 LOCs (Lines

of Code) or 30 Function Points is to be developed, and

productivity (somewhat like speed) of engineering team is 1

Function Point / Day or 166 LOCs /day, then total effort

required to develop the software can be computed as

Efforts Required = Software Size / Productivity (2)

= 5000/166 = 30 Person Days

Or

= 30/1 = 30 Person days

http://softwaretestingfundamentals.com/software-quality-assurance/
http://softwaretestingfundamentals.com/software-quality-control/
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Component
http://en.wikipedia.org/wiki/Software_project_management
http://en.wikipedia.org/wiki/Software_project_management
http://en.wikipedia.org/wiki/Weight
http://en.wikipedia.org/wiki/Estimation_in_software_engineering
http://en.wikipedia.org/wiki/Work_(project_management)

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 21 (2017) pp. 10861-10866

© Research India Publications. http://www.ripublication.com

10863

RESEARCH METHOD

The objective of this study is to perform extensive analysis

towards developing prediction model for testing efforts and

eventually facilitating strategic planning. Often Project

Managers or people responsible for quality of the software

have a big question in their mind that,

 Are we doing right amount of testing?

 Are we doing enough testing for uncovering all the

defects in software?

 Determination of that if sufficient testing is done?

Data Source

Data used in this study is taken from Benchmarking Release

10 by the International Software Benchmarking Standard

Group (ISBSG)[2]. The ISBSG established in 1994 a not for

profit organization that has been established to improve the

global understanding of software practices, so that they can be

better managed. ISBSG has gathered on 4,106 software

projects from around the world, and made available on

Release 10 of Estimating, Benchmarking & Research Suite

CD.

Methodology

We have addressed these problems & researching the

effective solution to these problems

 Extensively worked on Testing Strategy – mainly for

determination of sufficiency of the testing.

 Solution devised not only answers the questions

mentioned but also reduces the overall cost of testing

phase.

 Following steps were followed

i. For sizing initially lines of code (LOC) is used as a

measure

ii. Determining base value of no of test steps

iii. Applying base value of test steps per KLOC vs.

actual test steps per KLOC

Let us first understand, how does size of software is related to

no. of defects Injection?

In smaller software i.e. small in size, it is highly likely that

developers inject fewer defects compared to larger size

software.

In larger size software defects injection by developers is likely

to be more as it is bigger and has more user functionality.

Now, from this it is evident that software size is directly

proportional to defects count. Now, Assuming number of

defects logically depends on Size, i.e. more the size number of

defect.

 (3)

And also, if there more defects injected into software then

more amount of testing is required to uncover all the defects

injected

 (4)

From these two dependencies, we can logically infer that size

and required amount of testing can be seen related

 (5)

However, we cannot increase the testing efforts too much, for

big size requirement. So, need arises to quantify this

relationship of dependency

Now, let us consider simplification of this dependency is a

major problem, which we have to provide solution for.

Testing process as a whole starts with writing of testing steps

for testing the software, It would be amazing to the know that

how many testing steps would be sufficient for testing the

whole software and which are enough to uncover all the

defects. Here we introduce an empirical approach to address

this problem

Results

“Access to accurate historical data helps projects counter

unrealistic expectations and negotiate plans that support

quality instead of undermining it” Quantitative Software

Management (QSM) [3]

Let’s take a project we finished and delivered for user testing,

and take the data for this project, for the all the programs of

this project i.e. if this project has twenty five programs, take

data for all twenty five programs covering the fields “Lines of

Code” “Defects” – Defects leaked to the user, “Test Steps

Prepared”, now calculate no. Test Steps per Kilo Lines of

code i.e. “No of Test Steps per KLOC”.

Arranging all these data lines in ascending order of “No of

Test Steps / KLOC”, now on observing defect count trend, we

can see as “No of Test Steps / KLOC” is increasing defect

count is decreasing.

From decreasing trend we can select optimum band of

programs for lower limit & higher limit of “No of Test Steps /

KLOC”, mean of this can be taken as base value of No of Test

Steps per KLOC.

Base Value = Mean (Test Steps/KLOC) of lower line &

higher line, see yellow band in below table 1 i.e. from

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 21 (2017) pp. 10861-10866

© Research India Publications. http://www.ripublication.com

10864

program no 10 to 16, 10th program marks a lower band & 16th

program make a higher band.

In below data (as specified in Table 1), (36+51)/2 = 43, so 43

is base value now computing the required no of Test Steps as

per this computed base value.

Now computing “Test Steps Prepared vs. Base Value” i.e.

 (6)

If % is less than 100% then testing is insufficient i.e. more test

steps should be been written. If it is more than 100% then

excess testing has been done & thus incurred extra cost which

should have saved.

Table 1: Software Programs data along with test steps required

Program

No.

LOC Defect# Test Steps Prepared Test Steps / KLOC Test Steps Req.

as per base value

Test Cases

Prepared Vs Base Value

Result

1 2174 0 22 10 93 24% No

2 5184 2 57 11 223 26% No

3 6254 3 74 12 269 28% No

4 894 1 18 20 38 47% No

5 833 0 18 22 36 50% No

6 4634 2 105 23 199 53% No

7 1534 5 45 29 66 68% No

8 884 0 27 31 38 71% No

9 1516 2 50 33 65 77% No

10 862 2 31 36 37 84% No

11 664 0 25 38 29 88% No

12 700 1 28 40 30 93% No

13 1783 1 72 40 77 94% No

14 235 0 10 43 10 99% No

15 556 1 26 47 24 109% Yes

16 572 0 29 51 25 118% Yes

17 455 0 24 53 20 123% Yes

18 706 0 43 61 30 142% Yes

19 257 0 19 74 11 172% Yes

20 281 0 26 93 12 215% Yes

21 587 0 56 95 25 222% Yes

22 338 0 46 136 15 316% Yes

23 249 0 38 153 11 355% Yes

24 425 0 66 155 18 361% Yes

25 340 0 62 182 15 424% Yes

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 21 (2017) pp. 10861-10866

© Research India Publications. http://www.ripublication.com

10865

Now using this computed base value can be applied a project

which is new, in planning stage of testing we can use the base

value of the previous recent project.

So, if the project-2 is consisting of 14 programs then, then 43

as a base value can used for sufficiency of testing in advance,

this can save the efforts and therefore cost can be saved. In

below table 2 program wise illustration is provided to check

for sufficiency of testing.

Gap between required test steps & prepared test steps is

highlighted using following figure 1: gaps are highlighted for

which less test cases are prepared than required and where

more test cases are more than required, so these gaps need to

be addressed.

Figure 1: Comparison of Test Steps Prepared Vs. Test Steps Required

Illustration :

Program

Name

Test Steps Req. as per

base value

Test Steps

Prepared

Test Cases Prepared

Vs Base Value

Result

Prg-1 51 50 98% Insufficient Testing

Prg-2 46 48 104% Sufficient Testing

Prg-3 40 23 58% Insufficient Testing

Prg-4 30 11 37% Insufficient Testing

Prg-5 50 48 96% Insufficient Testing

Prg-6 40 55 138% Sufficient Testing

Prg-7 62 48 77% Insufficient Testing

Prg-8 43 79 184% Sufficient Testing

Prg-9 32 110 344% Sufficient Testing

Prg-10 27 141 522% Sufficient Testing

Prg-11 17 23 135% Sufficient Testing

Prg-12 40 111 278% Sufficient Testing

Prg-13 30 33 110% Sufficient Testing

Prg-14 20 22 110% Sufficient Testing

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 21 (2017) pp. 10861-10866

© Research India Publications. http://www.ripublication.com

10866

DISCUSSION

As specified by “Research and realization of software testing

model based on CSCW”, Wenjian Liang, Xiufen Fu[4] -

Using the reasonable model for software testing can reduce

the expenses of testing in the developing activity in the course

of testing, thus cut down the cost of software development, we

have tried to cut down the cost of quality of software

development, We have established the a method for

computing count of test cases required using the

benchmarking data published by International Software

Benchmarking Service Group[2]. Our study results shows that

based on the size of a program, number of test cases or steps

required can be predicted for a program using base matrix

created empirically by considering projects completed in past.

This gives number of required test cases and eliminate the

need of preparing too many test steps. Our findings are in line

with the finding published by Jorgensen, M. and Boehm, B.

“Software Development Effort Estimation: Formal Models or

Expert Judgment?” IEEE Software [5] in his research edition

2009. Our study shows that to compute the efforts in person

hours we need to consider technology wise productivity. Our

finding also in line with numerous work listed by Alessandro

Orso, Gregg Rothermel – “Software Testing: A Research

Travelogue (2000–2014")”[6] – our study gives empirical

evidence for saving the overall cost of quality and at the same

time maintain high quality of software thus maintain balance

between cost & quality of software and ensuring the success

of the project.

CONCLUSION

We can conclude that cost of quality (COQ) can be saved

using this prediction model specified by this paper and at the

same time maintaining high software quality of the software.

Also, we could establish the relationship between size &

testing of the software. Technology wise productivity figures

can also be used to determine technology specific testing

efforts, as software size is independent of technology.

A new prediction model is evolved for estimating / predicting

required number of test steps per Kilo lines of code – a

measure of size, as an empirical approach which is practical

and also have good evidence in past projects data as evident

by equations (1) to (6)

First, a base value matrix of Test Steps is prepared based on

the completed projects data, for various different projects

types, Base value of testing steps is determined based on the

lower band & higher band, which typically describes a range

of Test Steps per Kilo Lines of code.

Then this matrix can be used to compute the sufficiency of

testing for various programs in another project of similar

nature as illustrated in detailed approach, required number of

test steps are determined using the prediction model of base

value matrix.

But we should remember, we cannot be absolutely sure that

the software will not fail, but definitely with a sound and

experimentally validated statistical model, we can say that we

have done sufficient testing, say with 98 percent confidence

REFERENCES

[1] Software Engineering – A Practitioner’s Approach –

Roger S. Pressman, Fifth Edition Published by

McGraw-Hill

[2] ISBSG “The Benchmark data for Software estimation”

Release 10 (2011)

[3] QSM Software Almanac, Application Development

Series. 2014 Research Edition.

[4] Wenjian Liang, Xiufen Fu ; Zhenkun Li ; Rong Xiao ;

Junfeng Hu – Research and realization of software

testing model based on CSCW - Computer Supported

Cooperative Work in Design, 2005, IEEE, Proceedings

of the Ninth International Conference on (Volume:2),

Page 704 - 709 Vol. 2, May 2015

[5] Jorgensen, M. and Boehm, B. “Software Development

Effort Estimation: Formal Models or Expert

Judgment?” IEEE Software, March-April 2009, pp. 14-

19

[6] Alessandro Orso, Gregg Rothermel – “Software

Testing: A Research Travelogue (2000–2014")”, 2014

