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Abstract— The requirements of software users are changing 
dynamically with a rapid pace which is attributed to the 
competitive environment and strong market position. The 
software industry needs to accomplish wearisome task of 
producing and upgrading the quality application software cost-
effectively. With the advent of new technology, the 
upgradations and enhancements in the software have become 
more viable. Equipped with technology, the software industry 
releases new software rapidly at regular time intervals. Apart 
from the quick releases, the utmost need of the hour is to 
ensure that the software will perform without failure for 
specific duration of time under specified conditions to meet the 
expectations of the users. Therefore, the prediction and 
quantification of software reliability is consequential. Software 
reliability growth models (SRGM) are robust tools used for the 
quantitative prediction of software reliability. SRGM use 
failure data to graphically analyze the pattern of failure 
detection rate to measure software reliability, in terms of two 
basic curves,- S-shape curve and Concave curve. The focus of 
the paper is to review the basic SRGMs on the basis different 
shapes of the failure curve attained during the software 
reliability quantification process. 
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I. INTRODUCTION

In this era of technological advancements the computers and 
software have become an integral part of our lives. With the 
involvement of software in every sphere of human life, the 
utility of software has increased. The application software 
have marked their presence in all spans of life from mission 
critical applications like defense, military to safety 
application such as medical procedures [10]. The failure of 
such software may result in financial setback, loss of life or 
failure of a critical operation.  Therefore, these vital 
applications require reliable software to perform relentlessly 
without failure [2]. Hence, prior to releasing the software 
product it is very important to determine whether it will 
perform as per the user expectation without failure [10,11]. 
Moreover, with the growth of existing market, a constant 
increase in the size and complexity of the software has been 
observed. In this scenario, the quantification of software 
reliability is the utmost need of the hour. The reliability is 
expressed in terms of failure free deliberation of an 
anticipated function, for a specified duration of time in a  

given operational environment [3][9]. Hence taking this into 
consideration measuring software reliability is very desirable 
to quantitatively analyze the software reliability. SRGMs are 
mathematical models that statistically analyze software 
reliability, hence confer an account of the quality of software 
product. SRGM quantifies software reliability by 
establishing the mathematical relationships between testing 
time and the rate at which failures occur at the time of 
testing. These relationships are established in terms of 
stochastic processes, probability and statistical formulas. In 
the testing phase, the failure data is gathered which is used in 
SRGM to predict the software reliability during its 
operational tenure in the future [11][16][14]. The failure data 
is considered as input to the SRGM which produces the 
reliability prediction as the output in the terms of 
mathematical functions such as exponential or logarithmic 
functions. These functions are accountable for the prediction 
of time between the failure[14]. When the failure data is 
plotted in terms of ‘Cumulative usage time’ and ‘cumulative 

number of faults detected’, the two basic shapes are observed 

known as S-shape and concave [16].  
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Figure 1.  Concave and S-shape obtained by software reliability growth 

model.  
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Both the s-shape and concave curve depict the asymptotic 
behavior i.e. a finite asymptotic value is attained by both the 
curves because the fault rate plunges down steadily as the 
defects are detected and repaired during the tenure of testing 
[2]. 

II. CONCAVE MODELS 

The Concave shaped models are Decreasing Failure Rate 
(DFR) models. In these models the failure rate decreases at a 
constant pace as the number of faults are detected and 
removed. The idea behind DFR is that as the given pre-
determined number of errors are detected and removed, the
software reliability improves [4]. In these models when 
failure data is supplied as input, the failure rate reduces 
steadily and becomes constant after some time, during the 
testing tenure. The constant decrease in the failure rate is 
attributed to regular detection and removal of the faults at a 
constant pace during the course of testing. Hence, the 
concave  shape pattern is obtained [2]. Goel-Okumoto, Musa 
and Jelinksi-Moranda models are amongst the earliest 
concave shape models. The paper describes these models in 
detail in the following section. 

A. Jelinski Moranda Model 
Jelinski and Moranda model (J-M Model) is one of the 

primitive software reliability models. It is based upon the 
Markov process, according to which the failure is 
represented by countable states. These states are expressed in 
terms of a hazard function. The model established a
relationship between the hazard rate and number of faults 
corrected or remaining in the software. It states that the 
hazard rate constantly varies each time when a fault is 
corrected which means that the hazard rate remains constant 
between failures but decreases gradually as faults are 
removed [17]. This is the reason why the hazard rate versus 
time graph depicts a step pattern. 

      Hazard                           λ

     Rate 
                       λ

                                                                                    λ

                                   Time 

Figure 2. Relationship between Hazard rate and time in J-M model 

The J-M model made the following assumptions: 
� The failure rate is constant and proportional to the 

current fault content remaining in the software [15].
� The initial error content is also constant and 

remains unpredictable [15].
� The failure which may occur due to a fault or error 

is random in nature and occurs according to an 
exponential distributed function [17].

� The time between the failures i and i-1 are 
independent of each other [1]. 

The following mathematical expression gives the hazard 
function or failure rate calculated between ith and i-1th failure: 

     Z(ti)=ɸ(N-(i-1))                                       i=1,2,3,4,....N [12] 
ɸ= Proportionality constant determining the failure rate 

per fault 
N= The count of initial number of faults 
ti= Time elapsed between the ith and i-1th failures 

This process of determining the fault detection rate on the 
basis of number of fault content remaining in the system is 
known as “De-eutrophication” process [7]. In this model, 
since the hazard rate constantly decreases, hence the failure 
detection rate increases steady and becomes constant the 
shape of the curve is concave. 

B. MUSA basic execution model 
 MUSA model is pioneer in determining the software 

reliability in terms of execution time which is expressed as 
the time duration for which the processor was actually 
utilized. In this model a relationship between the execution 
time and failure rate was established. The model defined 
execution time as the measure of processor utilization during 
the execution of the program [7][8].The model inferred that 
the software reliability can be quantified more precisely in 
terms of the execution time as compared to the other 
measures of software reliability [12]. Moreover, it states that 
the analysis and measurement of failure rate can be done 
more effectively when time of execution of the software is 
more. The number of failures occurring in a given time 
interval is dependent upon the execution history of the 
software. It is a perfect debugging model in which when the 
fault is removed then it is considered to be removed perfectly 
and it will not lead to the introduction of the new faults [8].

The model made the following assumptions [7][8]:
� When a failure is encountered, the immediate action 

is taken to eradicate the fault which is the root cause 
of failure. 

� The failure intensity plunges down exponentially 
with the increase in the number of failures detected. 

� All of the failures are taken into consideration. 
� The failure intensity decreases steadily with a 

constant rate during the testing. 
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� The execution time is expressed in terms of Non-
Homogeneous Poisson Process. 

The model expresses the Mean Value function as 
follows:           

m (t)=a(1- e-(λ/a)t)    [12] 
λ = Failure intensity
m(t) = Expected number of failure experienced in time 

duration ‘t’
a = The total number of faults occur in infinite time
t =  Execution time 

          Total Failures  

                                        Basic Execution 

                                          Time Model 
t 

                       Execution Time, t

Figure 3. Concave shape Musa Basic execution model 

During the course of testing the failure intensity decreases 
constantly as the decreasing function of the execution rate. 
Hence, the number of faults detected showed a steady 
increase and gradually became constant which is accountable 
for the constant rise in the failure detection rate. Therefore, 
the curve attained a concave shape.  

C. Goel and Okumoto 

Before Goel and Okumoto (G-O) model breaks new grounds 
in the area of software reliability modeling based on NHPP. 
This exponential SGRM is a time dependent failure rate 
detection model [5].G-O model is an imperfect debugging 
model in which the removal of one fault may lead to the 
introduction of the other faults.  
The model made the following assumptions [1][12]: 
  

� The failure rate is dependent upon the count of the 
faults remaining in the software  

� The Non-Homogeneous Poisson Process form the 
bases of failure detection 

� When a failure is detected, the fault that leads to the 
failure is determined and eradicated before further 
testing. 

� The time elapsed between two consecutive failures 
is proportional to the time to failure. 

� The debugging process is considered to be perfect 
in which no new fault will be introduced  

The hazard function is mathematically expressed as follows: 

z(τ)=ɸf(N-nc [12] 
z(τ)=hazard function
τ= execution time
f=  linear execution frequency 
ɸ= proportionality constant 
nc= Number of the faults corrected between interval {0, τ}

The Mean Value Function is described as follows: 

m(t)=a(1-e-bt) [1]    
m(t)= Mean value function 
b(t)= Rate of fault detection 
a(t)= Error content function  

G-O model is different from Jelinski & Moranda model, in 
terms of assumptions made with regard to the initial error 
content .In G-O model the initial error content is taken as a 
random variable, which can’t be a pre-determined fixed 
constant as proposed in the J-M model. The J-M model 
suggested that the time between failures is independent 
whereas the G-O model assumes that the time duration 
between two concurrent failures i and i-1 is dependent on the 
time to failure i-1 [1][12]. This model is an imperfect 
debugging model. 

III. S- SHAPED MODEL

The models depicting S-shape patterns also demonstrate 
the asymptotic behavior similar to the concave model. The 
failure data which is used to plot the curve is analyzed in two 
phases of software testing. In the early phase, the testing is 
comparatively less effective than the later phase because the 
testing team performs testing using same test cases as used 
by the development team, therefore the failure rate decreases. 
This is the reason why the curve attains the inward bulge. 
Later on, in the application testing phase, the new defects are 
uncovered. Therefore in the later stages of testing, the S-
shape curve behaves in the same manner like the concave–
curve [2]. The next section illustrates the popular s-shape 
models. 

A. Yamada Weibull Effect Model 
The Weibull model was proposed by Yamada that 

established the relationship between testing effort and 
current error content. The testing effort is the effort spent in 
terms of resources consumed during testing in order to detect 
and remove errors during arbitrary time tenure.  

The model made the following assumptions [18]: 
� The system failures occur at random number of 

times due to the faults present in the software.  
� The initial error content is expressed in terms of a 

random variable. 
� The time elapsed between two consecutive failures 

is proportional to the time to failure. 
� Whenever the failure is encountered, the actions are 

taken to remove the cause of failure immediately. 

In this model the following equation for Mean Value 
Function is stated as: 
m(t)=a(1-exp(-r W(t))) [18] 
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m(t)= Mean Value Function                     
a= Mean value of initial Error content  
W(t)= testing effort 
r= rate of error detection 

The testing effort reduces during the tenure of testing 
since the number of resources consumed decreases as the 
testing proceeds. Hence the testing effort depends upon the 
availability of the testing resources consumed [13].

B. Pham and Nordmann (1997b) 
      Pham model is a generalized S-shape imperfect 
debugging NHPP software reliability model that provides a 
mathematical expression for the estimation of software 
reliability based upon the calculation of Mean value function 
(MVF). According to this model the calculation of software 
reliability is divided into three steps procedure. The first step 
involves stochastically calculating the cumulative numbers 
of errors during a time span ‘t’. In next step, the mean value 

function is defined in terms of error content function ‘a(t)’ 

and Error detection rate ‘b(t)’. Finally the model is analyzed 

using test data and Mean value function is calculated. MVF 
is measure of the number of faults accumulated in the 
software in any given time  ‘t’ [6].  

The model made the following assumptions: 
� Each fault has different error detection rate. 
� The detection of a failure leads to the removal of 

error causing it but it may introduce new fault. 

The equation of Mean Value Function is calculated as 
below: 

m(t)=e-B(t )[ mo +
t
ʃa(t)b(t) e-B(t)dt ] [12]  

                                     to  
                                                                                                       

                                  B(t)= t
ʃ b(t) dt  [12]    

        to

m(t)= Mean value function
b(t)= fault detection rate 
a(t)= error content function 
initially m(t0)=m0, t0 is the time to begin debugging 

process 

The  error content function a(t) predicted a imperfect 
debugging trend because the total numbers of errors 
augmented at a steady rate because the eradication of errors 
lead to the introduction of new errors in the system. It was 
observed that the fault detection rate b(t) surged up as well 
because the software tester expertise in error detection 
improves with the course of testing process [6].

C. KG Model 
      The model focused upon the eradication of additional 
faults in the process of removal of the intended faults 
detected during the testing process, assuming that the 

removal of additional faults not lead to any failure 
conditions. The model categorized the faults as dependent 
and independent faults. The independent faults are those 
faults which are initially detected and eradicated during the 
course of testing process. The dependent faults are those 
which are removed additionally during the eradication of 
independent faults [13,12].

The model considered the following assumptions [13]: 

� The remaining error-content may lead to the 
software failure at random number of times. 

� While detecting and removing the existing faults 
during the error detection process, the tester may 
encounter some additional errors. 

� The removal of the existing error will not introduce 
the new errors. 

� The complete duration of a software development 
life cycle often exceeds the optimal release time. 

� There is an error-detection procedure followed at 
the manufacturer’s end, then subsequent procedure 

must also be adopted at the user’s end. 
The mean value function is calculated as follows: 

mr(t)= a[ (1-e-(p+q)t)/ 1+(q/p) e-(p+q)t]      [12] 
mr(t)= Mean Value function 
p=failure detection rate for leading faults 
q=failure detection rate for dependent faults 
a= Error content 

The model illustrates that the s-shaped growth curve is 
obtained by virtue of fault dependency and debugging time 
lag whereas the failure phenomenon is expressed in terms of
exponential growth curve [12][13].

IV. CONCLUSIONS

The failure data observed during the time of testing can be 
utilized in the quantification of software reliability. Hence 
the time to failure can be predicted and software testers may 
decide when to stop testing and release software. In concave 
shape models a gradual dip in the failure rate occurs when 
errors are detected and removed during testing. Jelinski 
Moranda and Musa model are simple models based upon the 
concept of perfect debugging where a direct relationship 
existed between the failure rate and number of faults 
generated. The perfect debugging models assume that the 
detection of faults will not introduce the new faults and the 
error content is reduced as the faults are removed.Musa 
model depicted that the software reliability can be 
quantified more precisely in terms of execution time as 
compared to the other measures of software reliability. G-O
model explained that the initial fault content must be a 
random variable and the time between two failures is 
dependent upon the time to failure. The statistical 
interpolation of the s-shape graphs depicted that the failure 
detection rate initially reduces because at the time of testing 
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the testing team performs the same test cases as created by 
the development team but at the later stages as it introduces 
the new test cases, the failure rate surges up justifying the s-
shapedness of the failure curve. These models are imperfect 
debugging models since the introduction of new faults in the 
process of failure removal may lead to additional faults, 
hence fault removal rate is not constant but it varies during 
the course of testing. 

TABLE I. COMPARISON OF SOFTWARE RELIABILITY GROWTH MODEL
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Comparison of  Software Reliability Growth Models
Model 
name

Model 
type

Nature of 
Debugging

Model  Considerations

Jelinski 
Moranda 
J-M
Model

Conca
ve

Perfect 
Debugging Model

Initial Fault content is 
constant
Time between failures is 
independent

MUSA 
basic 
executio
n model

Conca
ve

Perfect 
Debugging model

Failure rate is dependent 
upon the execution time
Initial fault content is 
constant

Goel and 
Okumot
o (G-O) 
model

Conca
ve

Imperfect 
Debugging model

Fault content is a random 
variable
Time between two failure is 
proportional to the time 
between two failures
Removal of fault may lead 
to the introduction of 
additional fault

Yamada 
Weibull 
Effect
Model

S-
shape

Imperfect 
Debugging model

Testing effort is proportional 
to the current error content.
Initial fault content is a 
random variable

Pham 
and 
Nordma
nn

S-
shape

Imperfect 
Debugging model

Initial fault content is a 
random variable
Fault content may increase 
due to introduction of new 
faults.

K-G
Model

S-
shape, 
Expon
ential 
growth

Imperfect 
Debugging model

Initial fault content is a 
random variable
Fault content may lead to 
random number of failures
Additional faults are 
removed in the process of 
removal of detected faults
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