
A Comparative Study of S-shape and Concave Software Reliability Growth Models

Ela Kashyap1

Amity School of Engineering and Technology
Amity University

Noida, Uttar Pradesh,
ekashyap@amity.edu

Ajay Rana2

Amity School of Engineering
Amity University

Noida, Uttar Pradesh,
ajay_rana@amity.edu

Abstract— The requirements of software users are changing
dynamically with a rapid pace which is attributed to the
competitive environment and strong market position. The
software industry needs to accomplish wearisome task of
producing and upgrading the quality application software cost-
effectively. With the advent of new technology, the
upgradations and enhancements in the software have become
more viable. Equipped with technology, the software industry
releases new software rapidly at regular time intervals. Apart
from the quick releases, the utmost need of the hour is to
ensure that the software will perform without failure for
specific duration of time under specified conditions to meet the
expectations of the users. Therefore, the prediction and
quantification of software reliability is consequential. Software
reliability growth models (SRGM) are robust tools used for the
quantitative prediction of software reliability. SRGM use
failure data to graphically analyze the pattern of failure
detection rate to measure software reliability, in terms of two
basic curves,- S-shape curve and Concave curve. The focus of
the paper is to review the basic SRGMs on the basis different
shapes of the failure curve attained during the software
reliability quantification process.

Keywords -Software reliability growth model, S-shape growth
curve, Concave shape curve, software reliability

I. INTRODUCTION

In this era of technological advancements the computers and
software have become an integral part of our lives. With the
involvement of software in every sphere of human life, the
utility of software has increased. The application software
have marked their presence in all spans of life from mission
critical applications like defense, military to safety
application such as medical procedures [10]. The failure of
such software may result in financial setback, loss of life or
failure of a critical operation. Therefore, these vital
applications require reliable software to perform relentlessly
without failure [2]. Hence, prior to releasing the software
product it is very important to determine whether it will
perform as per the user expectation without failure [10,11].
Moreover, with the growth of existing market, a constant
increase in the size and complexity of the software has been
observed. In this scenario, the quantification of software
reliability is the utmost need of the hour. The reliability is
expressed in terms of failure free deliberation of an
anticipated function, for a specified duration of time in a

given operational environment [3][9]. Hence taking this into
consideration measuring software reliability is very desirable
to quantitatively analyze the software reliability. SRGMs are
mathematical models that statistically analyze software
reliability, hence confer an account of the quality of software
product. SRGM quantifies software reliability by
establishing the mathematical relationships between testing
time and the rate at which failures occur at the time of
testing. These relationships are established in terms of
stochastic processes, probability and statistical formulas. In
the testing phase, the failure data is gathered which is used in
SRGM to predict the software reliability during its
operational tenure in the future [11][16][14]. The failure data
is considered as input to the SRGM which produces the
reliability prediction as the output in the terms of
mathematical functions such as exponential or logarithmic
functions. These functions are accountable for the prediction
of time between the failure[14]. When the failure data is
plotted in terms of ‘Cumulative usage time’ and ‘cumulative

number of faults detected’, the two basic shapes are observed

known as S-shape and concave [16].

 S-SHAPED
Cumulative
 No. Of
 Errors

 CONCAVE SHAPE

 Cumulative Usage Time

Figure 1. Concave and S-shape obtained by software reliability growth

model.

2015 International Conference on Computational Intelligence and Communication Networks

978-1-5090-0076-0/15 $31.00 © 2015 IEEE

DOI 10.1109/CICN.2015.280

1452

2015 International Conference on Computational Intelligence and Communication Networks

978-1-5090-0076-0/15 $31.00 © 2015 IEEE

DOI 10.1109/CICN.2015.280

1452

2015 International Conference on Computational Intelligence and Communication Networks

978-1-5090-0076-0/15 $31.00 © 2015 IEEE

DOI 10.1109/CICN.2015.280

1452

Both the s-shape and concave curve depict the asymptotic
behavior i.e. a finite asymptotic value is attained by both the
curves because the fault rate plunges down steadily as the
defects are detected and repaired during the tenure of testing
[2].

II. CONCAVE MODELS

The Concave shaped models are Decreasing Failure Rate
(DFR) models. In these models the failure rate decreases at a
constant pace as the number of faults are detected and
removed. The idea behind DFR is that as the given pre-
determined number of errors are detected and removed, the
software reliability improves [4]. In these models when
failure data is supplied as input, the failure rate reduces
steadily and becomes constant after some time, during the
testing tenure. The constant decrease in the failure rate is
attributed to regular detection and removal of the faults at a
constant pace during the course of testing. Hence, the
concave shape pattern is obtained [2]. Goel-Okumoto, Musa
and Jelinksi-Moranda models are amongst the earliest
concave shape models. The paper describes these models in
detail in the following section.

A. Jelinski Moranda Model
Jelinski and Moranda model (J-M Model) is one of the

primitive software reliability models. It is based upon the
Markov process, according to which the failure is
represented by countable states. These states are expressed in
terms of a hazard function. The model established a
relationship between the hazard rate and number of faults
corrected or remaining in the software. It states that the
hazard rate constantly varies each time when a fault is
corrected which means that the hazard rate remains constant
between failures but decreases gradually as faults are
removed [17]. This is the reason why the hazard rate versus
time graph depicts a step pattern.

 Hazard λ

 Rate
 λ

 λ

 Time

Figure 2. Relationship between Hazard rate and time in J-M model

The J-M model made the following assumptions:
� The failure rate is constant and proportional to the

current fault content remaining in the software [15].
� The initial error content is also constant and

remains unpredictable [15].
� The failure which may occur due to a fault or error

is random in nature and occurs according to an
exponential distributed function [17].

� The time between the failures i and i-1 are
independent of each other [1].

The following mathematical expression gives the hazard
function or failure rate calculated between ith and i-1th failure:

 Z(ti)=ɸ(N-(i-1)) i=1,2,3,4,....N [12]
ɸ= Proportionality constant determining the failure rate

per fault
N= The count of initial number of faults
ti= Time elapsed between the ith and i-1th failures

This process of determining the fault detection rate on the
basis of number of fault content remaining in the system is
known as “De-eutrophication” process [7]. In this model,
since the hazard rate constantly decreases, hence the failure
detection rate increases steady and becomes constant the
shape of the curve is concave.

B. MUSA basic execution model
 MUSA model is pioneer in determining the software

reliability in terms of execution time which is expressed as
the time duration for which the processor was actually
utilized. In this model a relationship between the execution
time and failure rate was established. The model defined
execution time as the measure of processor utilization during
the execution of the program [7][8].The model inferred that
the software reliability can be quantified more precisely in
terms of the execution time as compared to the other
measures of software reliability [12]. Moreover, it states that
the analysis and measurement of failure rate can be done
more effectively when time of execution of the software is
more. The number of failures occurring in a given time
interval is dependent upon the execution history of the
software. It is a perfect debugging model in which when the
fault is removed then it is considered to be removed perfectly
and it will not lead to the introduction of the new faults [8].

The model made the following assumptions [7][8]:
� When a failure is encountered, the immediate action

is taken to eradicate the fault which is the root cause
of failure.

� The failure intensity plunges down exponentially
with the increase in the number of failures detected.

� All of the failures are taken into consideration.
� The failure intensity decreases steadily with a

constant rate during the testing.

145314531453

� The execution time is expressed in terms of Non-
Homogeneous Poisson Process.

The model expresses the Mean Value function as
follows:

m (t)=a(1- e-(λ/a)t) [12]
λ = Failure intensity
m(t) = Expected number of failure experienced in time

duration ‘t’
a = The total number of faults occur in infinite time
t = Execution time

 Total Failures

 Basic Execution

 Time Model
t

 Execution Time, t

Figure 3. Concave shape Musa Basic execution model

During the course of testing the failure intensity decreases
constantly as the decreasing function of the execution rate.
Hence, the number of faults detected showed a steady
increase and gradually became constant which is accountable
for the constant rise in the failure detection rate. Therefore,
the curve attained a concave shape.

C. Goel and Okumoto

Before Goel and Okumoto (G-O) model breaks new grounds
in the area of software reliability modeling based on NHPP.
This exponential SGRM is a time dependent failure rate
detection model [5].G-O model is an imperfect debugging
model in which the removal of one fault may lead to the
introduction of the other faults.
The model made the following assumptions [1][12]:

� The failure rate is dependent upon the count of the
faults remaining in the software

� The Non-Homogeneous Poisson Process form the
bases of failure detection

� When a failure is detected, the fault that leads to the
failure is determined and eradicated before further
testing.

� The time elapsed between two consecutive failures
is proportional to the time to failure.

� The debugging process is considered to be perfect
in which no new fault will be introduced

The hazard function is mathematically expressed as follows:

z(τ)=ɸf(N-nc [12]
z(τ)=hazard function
τ= execution time
f= linear execution frequency
ɸ= proportionality constant
nc= Number of the faults corrected between interval {0, τ}

The Mean Value Function is described as follows:

m(t)=a(1-e-bt) [1]
m(t)= Mean value function
b(t)= Rate of fault detection
a(t)= Error content function

G-O model is different from Jelinski & Moranda model, in
terms of assumptions made with regard to the initial error
content .In G-O model the initial error content is taken as a
random variable, which can’t be a pre-determined fixed
constant as proposed in the J-M model. The J-M model
suggested that the time between failures is independent
whereas the G-O model assumes that the time duration
between two concurrent failures i and i-1 is dependent on the
time to failure i-1 [1][12]. This model is an imperfect
debugging model.

III. S- SHAPED MODEL

The models depicting S-shape patterns also demonstrate
the asymptotic behavior similar to the concave model. The
failure data which is used to plot the curve is analyzed in two
phases of software testing. In the early phase, the testing is
comparatively less effective than the later phase because the
testing team performs testing using same test cases as used
by the development team, therefore the failure rate decreases.
This is the reason why the curve attains the inward bulge.
Later on, in the application testing phase, the new defects are
uncovered. Therefore in the later stages of testing, the S-
shape curve behaves in the same manner like the concave–
curve [2]. The next section illustrates the popular s-shape
models.

A. Yamada Weibull Effect Model
The Weibull model was proposed by Yamada that

established the relationship between testing effort and
current error content. The testing effort is the effort spent in
terms of resources consumed during testing in order to detect
and remove errors during arbitrary time tenure.

The model made the following assumptions [18]:
� The system failures occur at random number of

times due to the faults present in the software.
� The initial error content is expressed in terms of a

random variable.
� The time elapsed between two consecutive failures

is proportional to the time to failure.
� Whenever the failure is encountered, the actions are

taken to remove the cause of failure immediately.

In this model the following equation for Mean Value
Function is stated as:
m(t)=a(1-exp(-r W(t))) [18]

145414541454

m(t)= Mean Value Function
a= Mean value of initial Error content
W(t)= testing effort
r= rate of error detection

The testing effort reduces during the tenure of testing
since the number of resources consumed decreases as the
testing proceeds. Hence the testing effort depends upon the
availability of the testing resources consumed [13].

B. Pham and Nordmann (1997b)
 Pham model is a generalized S-shape imperfect
debugging NHPP software reliability model that provides a
mathematical expression for the estimation of software
reliability based upon the calculation of Mean value function
(MVF). According to this model the calculation of software
reliability is divided into three steps procedure. The first step
involves stochastically calculating the cumulative numbers
of errors during a time span ‘t’. In next step, the mean value

function is defined in terms of error content function ‘a(t)’

and Error detection rate ‘b(t)’. Finally the model is analyzed

using test data and Mean value function is calculated. MVF
is measure of the number of faults accumulated in the
software in any given time ‘t’ [6].

The model made the following assumptions:
� Each fault has different error detection rate.
� The detection of a failure leads to the removal of

error causing it but it may introduce new fault.

The equation of Mean Value Function is calculated as
below:

m(t)=e-B(t)[mo +
t
ʃa(t)b(t) e-B(t)dt] [12]

 to

 B(t)= t
ʃ b(t) dt [12]

 to

m(t)= Mean value function
b(t)= fault detection rate
a(t)= error content function
initially m(t0)=m0, t0 is the time to begin debugging

process

The error content function a(t) predicted a imperfect
debugging trend because the total numbers of errors
augmented at a steady rate because the eradication of errors
lead to the introduction of new errors in the system. It was
observed that the fault detection rate b(t) surged up as well
because the software tester expertise in error detection
improves with the course of testing process [6].

C. KG Model
 The model focused upon the eradication of additional
faults in the process of removal of the intended faults
detected during the testing process, assuming that the

removal of additional faults not lead to any failure
conditions. The model categorized the faults as dependent
and independent faults. The independent faults are those
faults which are initially detected and eradicated during the
course of testing process. The dependent faults are those
which are removed additionally during the eradication of
independent faults [13,12].

The model considered the following assumptions [13]:

� The remaining error-content may lead to the
software failure at random number of times.

� While detecting and removing the existing faults
during the error detection process, the tester may
encounter some additional errors.

� The removal of the existing error will not introduce
the new errors.

� The complete duration of a software development
life cycle often exceeds the optimal release time.

� There is an error-detection procedure followed at
the manufacturer’s end, then subsequent procedure

must also be adopted at the user’s end.
The mean value function is calculated as follows:

mr(t)= a[(1-e-(p+q)t)/ 1+(q/p) e-(p+q)t] [12]
mr(t)= Mean Value function
p=failure detection rate for leading faults
q=failure detection rate for dependent faults
a= Error content

The model illustrates that the s-shaped growth curve is
obtained by virtue of fault dependency and debugging time
lag whereas the failure phenomenon is expressed in terms of
exponential growth curve [12][13].

IV. CONCLUSIONS

The failure data observed during the time of testing can be
utilized in the quantification of software reliability. Hence
the time to failure can be predicted and software testers may
decide when to stop testing and release software. In concave
shape models a gradual dip in the failure rate occurs when
errors are detected and removed during testing. Jelinski
Moranda and Musa model are simple models based upon the
concept of perfect debugging where a direct relationship
existed between the failure rate and number of faults
generated. The perfect debugging models assume that the
detection of faults will not introduce the new faults and the
error content is reduced as the faults are removed.Musa
model depicted that the software reliability can be
quantified more precisely in terms of execution time as
compared to the other measures of software reliability. G-O
model explained that the initial fault content must be a
random variable and the time between two failures is
dependent upon the time to failure. The statistical
interpolation of the s-shape graphs depicted that the failure
detection rate initially reduces because at the time of testing

145514551455

the testing team performs the same test cases as created by
the development team but at the later stages as it introduces
the new test cases, the failure rate surges up justifying the s-
shapedness of the failure curve. These models are imperfect
debugging models since the introduction of new faults in the
process of failure removal may lead to additional faults,
hence fault removal rate is not constant but it varies during
the course of testing.

TABLE I. COMPARISON OF SOFTWARE RELIABILITY GROWTH MODEL

 REFERENCES

[1] A. L. Goel and K. Okumoto, “Time-Dependent Error-Detection Rate
 Model for Software Reliability and Other Performance Measures,”
 IEEE Trans. Reliab., vol. R-28, no. 3, pp. 206–211, 1979.
[2] A. Wood, “Software reliability growth models,” 1996.

[3] B.M.Kumar, “An Empirical Analysis of Software Reliability

 Prediction through Reliability Growth Model Using Computational
 Intelligence,” Comput. Intell. Data Min., vol. 2, pp. 513–524, 2015.
[4] D. S. Bai and W. Y. Yun, “Optimum Number of Errors Corrected

 Before Releasing a Software System.,” IEEE Trans. Reliab., vol. 37,
 no. 1, pp. 41–44, 1988.
[5] G. Aggarwal and V.K. Gupta., “Software Reliability Growth models,”

 Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 4, 2014.
[6] H. Pham, System Software Reliability. Verlang, London: Springer,
 2011
[7] J. D. Musa, “A theory of software reliability and its application (review

of existing methods),” Softw. Eng. IEEE Trans., 1975.
[8] J. D. Musa and K. Okumoto, “A logarithmic Poisson execution time

model for software reliability measurement,” ICSEproceedings 7th
Int. Conf. Softw. Eng., pp. 230–238, 1984.

[9] K. Taehyoun, K. Lee, and J. Baik, “An effective approach to
estimating the parameters of software reliability growth models using
a real-valued genetic algorithm,” J. Syst. Softw., vol. 102, pp. 134–
144, 2015.

[10] P. K. Kapur., A.Tondon, and G.Kaur, “Multi upgradation software

reliability model,” in 2nd International Conference on Relaibility,
Safety and Hazard(ICRESH), 2010, pp. 468–474.

[11] P. K. Kapur, D. N. Goswami, A. Bardhan, and O. Singh, “Flexible
software reliability growth model with testing effort dependent
learning process,” Appl. Math. Model., vol. 32, no. 7, pp. 1298–1307,
2008.

[12] P. K. Kapur, H. Pham, A. Gupta, and P. C. Jha, Software Reliability
Assessment with OR Applications. London: Springer, 2011,ch.3, pp.
117-151.

[13] P. K. Kapur and R.B Garg., “A software reliability growth model for

an error removal phenomenon,” Softw. Eng. J., no. 7, pp. 291–294,
1992.

[14] R. Lai and M. Garg, “A detailed study of NHPP software reliability

models,” J. Softw., vol. 7, no. 6, pp. 1296–1306, 2012.
[15] S.Lohmor and B.B Sagar, “Overview: Software Reliability Growth

Model,” Int. J. Comput. Sci. Inf. Technol., 2014.
[16] S. Mohamad, S. Mashita, and McBride T., “A comparison of the

reliability growth of open source and in-house software,” in 15th
IEEE Software Engineering Conference (APSEC’08), 2008.

[17] S. Peter, “Parameter estimation for a specific software reliability
model,” IEEE Trans., pp. 323–328, 1985.

[18] S. Yamada, “s-Shaped Software Reliability Growth Models and Their
Applications,” IEEE Trans. Reliab. Reliab., no. 4, pp. 289–292, 1984.

Comparison of Software Reliability Growth Models
Model
name

Model
type

Nature of
Debugging

Model Considerations

Jelinski
Moranda
J-M
Model

Conca
ve

Perfect
Debugging Model

Initial Fault content is
constant
Time between failures is
independent

MUSA
basic
executio
n model

Conca
ve

Perfect
Debugging model

Failure rate is dependent
upon the execution time
Initial fault content is
constant

Goel and
Okumot
o (G-O)
model

Conca
ve

Imperfect
Debugging model

Fault content is a random
variable
Time between two failure is
proportional to the time
between two failures
Removal of fault may lead
to the introduction of
additional fault

Yamada
Weibull
Effect
Model

S-
shape

Imperfect
Debugging model

Testing effort is proportional
to the current error content.
Initial fault content is a
random variable

Pham
and
Nordma
nn

S-
shape

Imperfect
Debugging model

Initial fault content is a
random variable
Fault content may increase
due to introduction of new
faults.

K-G
Model

S-
shape,
Expon
ential
growth

Imperfect
Debugging model

Initial fault content is a
random variable
Fault content may lead to
random number of failures
Additional faults are
removed in the process of
removal of detected faults

145614561456

