
Front. Comput. Sci.

DOI 10.1007/s11704-014-3496-9

A novel strategy for automatic test data generation using soft
computing technique

Priyanka CHAWLA 1, Inderveer CHANA1, Ajay RANA2

1 Computer Science and Engineering Department, Thapar University, Patiala 147004, India

2 Amity School of Engineering, Amity University, Noida 201301, India

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Abstract Software testing is one of the most crucial and

analytical aspect to assure that developed software meets pre-

scribed quality standards. Software development process in-

vests at least 50% of the total cost in software testing process.

Optimum and efficacious test data design of software is an

important and challenging activity due to the nonlinear struc-

ture of software. Moreover, test case type and scope deter-

mines the quality of test data. To address this issue, software

testing tools should employ intelligence based soft comput-

ing techniques like particle swarm optimization (PSO) and

genetic algorithm (GA) to generate smart and efficient test

data automatically. This paper presents a hybrid PSO and GA

based heuristic for automatic generation of test suites. In this

paper, we described the design and implementation of the

proposed strategy and evaluated our model by performing ex-

periments with ten container classes from the Java standard

library. We analyzed our algorithm statistically with test ad-

equacy criterion as branch coverage. The performance ade-

quacy criterion is taken as percentage coverage per unit time

and percentage of faults detected by the generated test data.

We have compared our work with the heuristic based upon

GA, PSO, existing hybrid strategies based on GA and PSO

and memetic algorithm. The results showed that the test case

generation is efficient in our work.

Keywords software testing, particle swarm optimization,

genetic algorithm, soft computing, test data generation

Received December 14, 2013; accepted September 21, 2014

E-mail: priyankamatrix@gmail.com

1 Introduction

Software testing forms an integral and indispensable part of

software development life cycle. Software development pro-

cess invests at least 50% of the total cost in software test-

ing process [1]. Now, if the safety is an integral feature of

the software the cost can go even higher [2]. To improve

the quality of software, extensive manual testing is infeasi-

ble due to the huge requirement of time and cost. At present,

there are lots of testing tools available in the market in which

we can observe automation of test scripts execution imple-

mented with the capture and playback mode feature of the

tools. This again depends on the human intelligence and his

involvement and hence does not perform software testing au-

tomatic completely. The selection of test cases is decided by

software tester and success of testing process depends upon

the expertise and intelligence of a tester. This can be fully au-

tomated if test data is generated automatically by the software

testing tool. Thus, automatic test data generation is one of the

potential areas of research in software testing. Software test-

ing can be effectively automated to generate test data with

soft computing strategies like genetic algorithm (GA) and

particle swarm optimization (PSO). It works by transfigur-

ing test data generation problem to optimization problem and

test goal to objective functions. The objective functions forms

the basis by which are solutions are compared and contrasted

while carrying out overall search goal. The overall search is

directed towards the search space of more fitter solutions pos-

sessing better objective function values. Keeping this point

2 Front. Comput. Sci.

in their view, many authors in the past have used intelligent

search algorithms like PSO and GA to achieve the goal of

automated generation of test data [3–9]. But by using these

algorithms in isolation, authors faced the problems of locally

stuck solutions.

Therefore authors started exploring the hybrid scheme of

GA and PSO to gain the advantages of both the strategies like

fast convergence rate, increased population diversity, ability

to find the global optimum and solution stability [10–15].

But still there is limited application of soft computing tech-

niques for automatic software test data generation in software

industries. This may be due to the fact of complex and itera-

tive nature of the existing strategies which requires huge cost

in terms of computational resources and time. So there is need

to develop the strategy that not only outperforms in terms

of coverage and fault detection but also focus to minimize

the cost in terms of computational resources requirement and

time taken to solve the problem.

Based on these considerations, in this paper, we present

a hybrid PSO and GAs based heuristic for automatic gener-

ation of test suites. The proposed algorithm is implemented

in Java and it integrates the evolution ideas of both the soft-

computing techniques (i.e., PSO and GA), in which crossover

operator would be applied between particle personal best val-

ues and global best values. The mutation operator is applied

to the global best particle and if it leads to better fitness

function value, the global best particle is modified otherwise

older gbest is retained. In this way, individual particles are

enhanced. These enhanced parent individuals are capable of

producing better offspring that can perform in better way than

other offsprings. Additionally, the offspring which are poor

in performance can easily be identified and can be removed

from the population. As a result, we are able to achieve the

following benefits:

i) Better run-time and space complexity.

ii) Able to generate test data for object oriented classes ef-

ficiently.

iii) Easier implementation.

iv) Only the best candidate solution are retained and

evolved for other better solutions.

v) Better convergence speed, solution quality, ability to

find the global optimum, and solution stability.

The primary contributions of our work are highlighted as

below:

i) Test suite representation of the object oriented software

consisting of series of object invocations, method calls

and parameters combination using context free gram-

mar.

ii) Novel test data generation strategy. The aim of the

strategy is to generate test data which promises 100%

branch coverage in minimum possible time.

iii) Experiments to investigate the effectiveness of our pro-

posed approach. We conducted experiments and com-

pared the results with our proposed strategy. The case

study subjects taken are Java container classes.

iv) Fault seeding experiments to assess the quality of gen-

erated test data by our proposed strategy.

v) Empirical analysis of the existing hybrid and traditional

strategies.

The paper is structured as follows: Section 2 introduces

the PSO and GAs, Section 3 throws light on related work,

Section 4 describes the proposed strategy in detail, Section 5

includes experimental evaluation, Section 6 throws light on

threats on validity of the approach and Section 7 summarizes

the paper and gives suggestions for future work.

2 Introduction to GA and PSO algorithm

This strategy embeds PSO with GA forming hybrid PSO

strategy yielding superior results than either the GA or PSO

can give when used in isolation. In this section, basic con-

cepts of GAs and PSO are introduced, followed by a detailed

introduction of our strategy in the next section.

GA is an evolved metaheuristic optimization technique that

works with a set of promising solutions tracking optimiza-

tion problem through encoding them on some data structures

called as chromosomes. This technique copies principle of

Darwian theory of biological evolution as it applies recombi-

nation and mutation operators on these chromosomes yield-

ing one or many candidate solutions. A basic algorithm for

GA is described in Algorithm 1 [16].

Algorithm 1 GA

input: Random population and appropriate fitness function

output: Optimized solution

Initialize(population);

Evaluate(population);

while not satisfied do

Selection (population);

Crossover (population);

Mutate (population);

end

Priyanka CHAWLA, et al. A novel strategy for automatic test data generation using soft computing technique 3

PSO utilizes swarm-based meta-heuristic search technique

given by Eberhart and Kennedy in 1995 [17,18]. It mimics so-

cial norms of bird flocking, animals herding or fishes school-

ing. Like swarms searching for food in a unified way, PSO is

also a set of random potential problem solutions, called parti-

cles. PSO strategy is based on the movement and exploration

of virtual input search space by a particle. Particle can be ob-

served as an object which consists of position and velocity as

two components as shown in Eqs. (1) and (2) [19]. A basic

algorithm for PSO is described in Algorithm 2 [19].

V j,d(t) = wV j,d(t − 1) + cr j,d(pBest j,d(t − 1) − X j,d(t − 1))

+cr j,d(lBest j,d(t − 1) − X j,d(t − 1)). (1)

X j,d(t) = X j,d(t − 1) + V j,d(t). (2)

Algorithm 2 PSO

input: Random Population and appropriate fitness function

output: Optimized solution

for each Particle i do

initPosition(i);

initBestLocal(i);

if i=1 then

initBestGlobal();

end

if improvedGlobal(i)==1 then

updateBestGlobal(i);

initVelocity(i);

end

end

while not endingCondition do

for each Particle i do

createRnd(rp,rg);

updateVelocity(i,rp,rg);

updatePosition(i);

if improvedLocal(i)==1 then

updateBestLocal(i);

end

if improvedGlobal(i)==1 then

updateBestGlobal(i);

end

end

end

3 Related work

Evolutionary structural testing is a search-based technique to

automate corresponding unit test case generation. Although,

various researchers have worked to prove its applicability in

the area of software test data generation, but still its applica-

tion is limited in the software industry [3, 5, 6, 20–23]. It is

because of the complexity and huge computational cost as-

sociated with these techniques. Therefore, the strategy has

been designed to reduce the complexity and cost of compu-

tation to a greater extent and also gets maximum benefits

(like its intelligence) of the soft computing techniques. The

search-based approaches employed for automated testing are

very extensive. There are several metaheuristic search tech-

niques like hill climbing, simulated annealing and evolution-

ary algorithms that have proved their elementary significance

while automatic test data generations. For concision, we only

emphasize here some of the closely related work. The most

closely related works to ours are techniques based on genetic

algorithm and particle swarm optimization that generate au-

tomatic test data for object oriented programs and structured

programs. We summarized them in the comparison Table 1

and also illustrated them below:

Zhang et al. [13] combined the ideas of GA and PSO for

automatic generation of test data. He took two population sets

P1 and P2 and applied genetic operators and PSO calculation

operations separately. Computation of fitness function values

is carried out on population P1 and particles are sorted based

upon their fitness function values in population P1 and best

fitness particles are added to population P2 at ratio phi. PSO

operations are applied to population P2 and updated fitness

function of particles in population P2 is computed. The par-

ticle transferred to P2 and removed from P1 and new random

particles are added to P1. The author took triangle classifica-

tion problem as a case study and demonstrated four paths as

test goal of his experiment and compared GA, PSO and GA-

PSO independently on each trail 100 times and observed that

GA-PSO took lesser number of iterations than GA and PSO.

The average execution time of GA-PSO was found more than

PSO but lesser than GA. Unlike our work, this technique gen-

erates tests that may be redundant and is more complicated as

it applies GA after applying PSO and requires several trans-

formations and exchanges in the different population sets.

Moreover, the test adequacy criterion chosen is path cover-

age which consumes lot of computational cost and time. Fur-

thermore, they did not assess fault detection capability of test

data which is one of the essential requirements of quality test

data. On the other hand, test adequacy criterion chosen by us

is branch coverage per unit time and we have observed in our

experiments that our approach is much simpler and efficient

in terms of achieving branch coverage of the code of struc-

tured as well as object oriented programs.

Li et al. [10] also suggested the test data generation strat-

egy based upon GA and PSO where he used PSO velocity

and distance updates instead of mutation operator of genetic

4 Front. Comput. Sci.

Table 1 The comparison table of existing test data generation strategy

Sr. No. Strategy Technology used Test adequacy criteria Performance criterion Case study Input format

1 Windisch et al. [5] PSO Branch coverage Fitness function evalu-
ations
Number of iterations

25 small artificial test
objects and 13 com-
plex industrial test ob-
jects

Instrumented source
program in MATLAB
GEATbx

2 Wegner et al. [6] Evolutionary testing Mean coverage Mean number of test
data

Six C programs Source program in C

3 Li et al. [10] Hybrid GA and PSO Path coverage Execution time Triangle benchmark
problems

C source code

4 Singla et al. [11] Hybrid GA and PSO dcu and dpu Number of test cases
and cover ratio per-
centage

Simple programs MATLAB

5 Zhang et al. [13] GA and PSO Path coverage Number of iterations
and average execution
time

Triangle classification
problem

Instrumented source
program in C

6 Kaur and Bhatt [15] Hybrid GA and PSO Fault coverage Execution time and
APFD

Simple programs Java

7 Wappler and Schiefer-
decker [28]

GA Distance metrics Branch coverage % Seven Java classes ECJ

8 eToc [30] GA Branch coverage Test cases, number of
fitness evaluation and
time

Container classes Instrumented source
code

9 Arcuri and Yao [32] GA and hill climbing Branch coverage Time and coverage % Container classes Java; Instrumented
code

10 Nayak and Mohapatra
[33]

GA and PSO dcu% dcu% Small 14 FORTRAN
programs

Instrumented code;
MATLAB

11 Ahmed et al. [34] Combinatorial testing
using PSO

Interaction elements Test size IPOG, WHITCH,
Tenny, TConfig and
TVG

12 Li and Zhang [35] PSO Path coverage Iteration time; time
consumption

Benchmark triangle
problem & binary
search program

Instrumented code in C

13 Fraser and Arcuri [36] GA Branch coverage Branch coverage Industrial project and
five open source li-
braries

Bytecode; Java

14 Gong and Zhang [37] GA Path coverage Fault detection and
coverage

Bubble sort pro-
gram Siemens suite,
print_tokens, schedule,
replace, tcas, space,
flex

Instrumented program
in C

15 Traditional GA GA Branch coverage Branch coverage Container classes Instrumented source
code in Java

16 Our proposed strategy GA and PSO Branch coverage per
unit time

Time, No. of test
cases, fault detection
and coverage per unit
time

Container classes Bytecode or source
code

algorithm. The chromosome representation used by him is

a binary vector and divided the population into “n” popula-

tion set based upon the length of the binary vector. Unlike our

strategy, he experimented only with triangle benchmark prob-

lem with path coverage as test adequacy as criterion and his

experimental results showed that his hybrid strategy is better

than traditional GA. However, this cannot be generalized for

every case study subjects.

Singla et al. [11] proposed test data generation strategy

based upon genetic and particle swarm optimization in which

authors used velocity and distance updates of particle swarm

optimization to enhance the particles and genetic operations

are applied after that. MATLAB was used for the implemen-

tation. This is somewhat similar to the approach proposed by

Zhang et al. [13]. The fitness function is based upon “defi-

nition computational” use and “definition predicate use”. He

tested his strategy only on some simple programs.

Kaur and Bhatt [15] also proposed hybrid strategy based on

GA and PSO in which author used only the mutation opera-

tor of GA to update the values of particles to solve prioritiza-

Priyanka CHAWLA, et al. A novel strategy for automatic test data generation using soft computing technique 5

tion problem in regression testing. The author’s strategy de-

pends on randomly selected mutant which caused larger exe-

cution time to find optimal solutions. Also, the algorithm has

been tested on less number of simple programs. Whereas, we

tested our strategy with much complex programs and found

efficient results in term of fault detection and branch cover-

age.

Wu et al. [12] suggested GAPSO hybrid strategy to over-

come the optimization problem of both continuous and dis-

crete parameters. The author has applied GA for discrete

magnitude and PSO for continuous magnitude. They tested

their approach by taking a quadratic equation and proved the

effectiveness of their approach. In contrast to their approach,

we utilized the hybrid strategy for solving test data generation

problem and tested very complex programs including object

oriented programs as well as procedural programs efficiently

in very reasonable time.

Chen [14] amalgamated PSO with genetic operator and

tested the new approach for multimodal functions taken from

the black-box optimization benchmarking (BBOB) functions

[24]. The author used crossover operations to the pbest parti-

cles to make it more explorative. He experimentally proved

that this scheme is much more efficient than dividing the

swarm into multi-swarm systems which periodically regroup

in terms of being more exploitative and explorative. This

is somewhat similar to our approach as we also applied

crossover operation with the pbest particles and mutation op-

eration by selecting gbest as mutant. Whereas Chen mod-

ified the velocity and distance update equations by adding

crossover component to it. This crossover step sets the posi-

tion of every particle to the midpoint of its pbest and a ran-

dom pbest drawn without replacement from the population of

pbest particles. In contrast to the author approach, we applied

the hybrid approach to solve the optimal software test data

generation problem and proved its effectiveness with the help

of various experiments.

To the best of our knowledge no other authors have ap-

plied hybrid strategy of GA and PSO for test data generation.

However, extensive work have been found that showed fruit-

ful results by blending genetic and particle swarm optimiza-

tion algorithm in the field like optimization for recurrent net-

work design, optimization for multi-modal functions, class

responsibility assignment problem in object oriented analysis

and design, economic dispatch problem, optimal tuning of

the controller parameter, document clustering, force method-

based simultaneous analysis and design problems for frame

structures etc., [25–27]. Furthermore, many authors have also

advocated the hybrid approach and showed the effectiveness

by testing it on some simpler benchmark functions, but lim-

ited work has been found that solves the problem of test data

generation, so we have also investigated the test data genera-

tion strategies which utilizes only genetic and particle swarm

algorithm for comparison with our proposed novel strategy.

Wapler and Schieferdecker [28] proposed the approach of

evolutionary class testing. His approach is based on genetic

programming system and utilized ECJ [29] to implement his

approach. He also suggested fitness function and termed it

as distance metrics in which he gave equal weightage to ap-

proach level and branch distance. Whereas in our research

work we defined fitness function in which we normalized the

branch distance to avoid its domination over approach level.

This helped us to guide the search algorithm movement better

and hence we achieved better coverage of more complicated

programs in much less time. Furthermore, the authors have

not mentioned about the computational cost of the generated

test data.

Windisch et al. [5] conducted experiments with 25 small

artificial test objects and 13 complex industrial test objects

and proved that PSO is more efficient and effective than GA.

Wegner et al. [6] compared evolutionary testing and ran-

dom testing for six C programs and found mean coverage

achieved by evolutionary testing much better than random

testing (RT). He also conducted that although test data gen-

erated by RT was much higher than evolutionary testing but

coverage achieved was not satisfactory.

Tonella [30] also tested container classes using conven-

tional GA but made some changes to the original version

of genetic algorithm to take care of the object oriented soft-

ware testing. Author applied one-point crossover and in ad-

dition defined three types of mutation operators which were

selected randomly. The author tested for container classes.

Wang and Jeng [31] also compared hill climbing, GA and

MA and shown MA the best algorithm but they performed

experiments for procedural functions. Arcuri and Yao [32]

proposed a metaheuristic based upon genetic algorithm and

hill climbing known as memetic algorithm. Authors applied

hill climbing technique on each generation to find local opti-

mum. He has tested his strategy on container classes and has

empirically proved their strategy better than random search,

hill climbing, simulated annealing and strategy based upon

conventional genetic algorithm. Nayak and Mohapatra [33]

adopted MATLAB to simulate their strategy for test data

generation using data flow testing and found PSO outper-

formed GA in def-use coverage %. She tested on small 14

FORTRAN programs and concluded that PSO required less

number of generations to achieve the same def-use cover-

6 Front. Comput. Sci.

age %. Ahmed et al. [34] adopted T-way interaction testing

using PSO and compared his tool with other strategy like

IPOG, WHITCH, Tenny, TConfig and TVG and observed

remarkable test suite minimization. He carried out 20 inde-

pendent test suite runs and proved that PSTG produced test

data of optimal size. Li and Zhang [35] employed PSO for

all-path automatic generation of test data. He performed his

experimental results for benchmark triangle problem & bi-

nary search program and did analysis on number of iterations

and time consumption and shown that their strategy much ef-

ficient. Fraser and Prcuri [36] employed GA and took branch

coverage as test criterion initially and later it was general-

ized for any rest criterion. He developed his tool in Java &

performed byte code instrumentation. To evaluate the strat-

egy, one industrial project and five open source libraries were

chosen and observed smaller test suite generated. He com-

pared whole test suite generation with single branch test case

generation and observed small test suites generated. He re-

peated his experiments 100 times with different seeds. Gong

and Zhang [37] proposed automatic generation of test data

for both path coverage and fault detection using genetic algo-

rithm. Authors tested their strategy for real world programs

and also compared with random and evolutionary optimiza-

tion techniques.

4 Proposed strategy

In this section, we describe the architecture adopted by us to

adapt PSO and GA for the automatic generation of test suites

for the unit testing of classes of given class under test (CUT).

The framework is shown in Fig. 1. We divided our framework

into four main modules as follows:

i) Instrumentor

ii) Optimizer

iii) Test executor

iv) JUnit file generator

Our proposed algorithm generates optimal test data for

both the procedural programs and object oriented programs.

The structure of test case for both the programs consists of

input data, parameter values of methods and the assertions

which verify the pass and failure status of a test. Figure 2

shows the format of test case of procedural program con-

taining only set of parameter values of the procedure call.

The test case format of object oriented program also consists

of sequence of constructor and method calls in addition to the

Fig. 1 Framework of novel strategy

above mentioned components. In object oriented paradigm,

there may be multiple constructor invocations for object cre-

ation to test the class under test. In addition to this, the objects

are also required to be put into special states to carry out the

test scenario in the desired order. This is done with the aid of

method calls on the required test objects. Figure 3 represents

the structure of test case of object oriented program contain-

ing two constructor invocations and parameter value of the

Fig. 2 Test case format of procedural program

Fig. 3 Test case format of object oriented program

Priyanka CHAWLA, et al. A novel strategy for automatic test data generation using soft computing technique 7

method. The first constructor invocation corresponds to the

instance of the class under test and another constructor is re-

quired as a parameter for the creation of object under test.

There is also an integer value required for method call.

4.1 Instrumentor

The instrumentation of CUT is essential for the evaluation

of fitness function. The fitness function used in this work is

based on branch coverage per unit time and branch distance

function. The role of instrumentation is to modify the original

executable image by inserting little instruction before every

block to indicate that the block was executed. To evidence

the branch distances, extra instruction is added before every

predicate. These instructions are responsible for the computa-

tion of branch distance and notify the testing environment of

it. The instrumentation can be carried out during runtime for

java open source libraries. We used Jacaco open source tool

to analyze the execution flow of the source code of CUT. Ja-

caco performs code coverage analysis using standard technol-

ogy in Java VM based environment1). It provides lightweight,

flexible and well documented library for integration with var-

ious build and development tools. Jacaco can perform effi-

cient on-the-fly instrumentation and analysis of applications

even in the absence of source code.

4.2 Optimizer

It is the main component of our framework which is respon-

sible for all the operations related to test data generation. Im-

plementation has been carried out using the intelligence of

GA and PSO algorithm. Retention of best particle positions

of particle swarm optimization and genetic operators like mu-

tation and crossover to evolve better solutions have been uti-

lized. We have used genetic operators for the modification of

the individuals in between the generations rather than using

position and velocity update rules of PSO because these op-

erators are more explorative. This was done to accommodate

the object oriented structure of the container classes as it con-

tains not only parameter values but also contains constructor

and method invocations. This helped us to achieve the in-

creased population diversity of GA and fast convergence rate

of PSO by selecting only the best individuals as the new can-

didate solution in the upcoming generation. The loop is iter-

ated until maximum number of iterations has been carried out

or the optimal solution found with the best fitness values and

coverage table has been formed as per the test goal received

from the user.

Optimizer also instructs JUnit test data generator module

to create JUnit file consisting of best individuals formed by

the proposed algorithm. Algorithm 3 gives the macro steps

of our proposed strategy. Particle representation and its cor-

responding test case format is a set of JUnit test cases for a

given CUT as shown in Fig. 4.

Algorithm 3 Proposed strategy

input: Source code of the class

output: A JUnit class

Generate random population of “n” particles.;

Initialize CovTable with results of random test data generation.;

Instrument the SUT;

Create TestGoals;

for TG← 1 to n do

target=TG;

while counter � maxIterations and target not satisfied do

Evaluate fitness of each particle in the population based on
branch coverage analysis;

Emit(Particle, Fitness);

for particle ← 1 to n do

if cpvector > pbest then

/* Compare current value of particle with the previ-
ous best particle */

pbest=cpvector;

/* Set particle best with the current value of the vector
*/

end

if Cgbest > gbest the

/* Compare current value of particle global best with
the previous global best */

gbest=Cgbest;

/* Set particle global best with current value of global
best */

end

end

If all the individuals have been processed then write best indi-
viduals in PBest and GBest Tables;

Apply crossover operation on each particle stored in PBest with
GBest;

Apply mutation over Gbest;

if its fitness value greater than GBest set it as new GBest;

Execute the instrumented code for each particle to check if there
any other untested branches being tested;

Update CovTable, TesGoal, TestSuite;

end

end

At the first step, type of program is taken as input from

the tester and the appropriate random test data is generated.

After initialization, CUT is instrumented. In the process of

instrumentation each condition is transformed into an expres-

sion which performs the same operations as by the original

1) Jacaco Web Page, http://www.eclemma.org/jacoco/

8 Front. Comput. Sci.

Fig. 4 The template of particle and test case format

program but also conveys the value taken by the reached con-

dition. We have used Jacaco as the instrumentor and also ex-

plained it in our previous section. The set of test goals are

also determined and is saved in a variable TG. The algorithm

is iterated for each and every identified TG and it has been

carried out maxIterations times. maxIterations denotes maxi-

mum allowable test data generation time and has been set by

the tester. The randomly generated test cases are executed on

the software under test with the intention to cover all the test

goals. The fitness function is computed for each and every

particle (i.e., test case). The pbest variables store the particles

which have best fitness value when compared with its pre-

vious best fitness function values. The cpvector contains the

current particle (i.e., solution) which is compared with previ-

ous best value. The better value (having better fitness func-

tion value) is stored in the variable pbest. In the similar fash-

ion it occurs for Cgbest and gbest. The gbest variable stores

the global best test case value (i.e., particle) having best fit-

ness function value in whole population at a given iteration.

All the individuals possessing better and best fitness func-

tion values are stored in the PBest and Gbest files. The test

cases (or a particle) that succeeds to cover the targets are also

saved in file named as FinalTestSuite. Crossover operation is

applied between the gbest and pbest particles to uncover the

new population individuals. Mutation is also applied to the

newly formed particle to introduce the diversity into the pop-

ulation. This process is repeated until all the test goals are not

covered or it exceeds the maximum limit of execution time of

test case generation. The set of test cases saved in FinalTest-

Suite can be redundant which is minimized by applying the

simple greedy algorithm by including the test cases which

cover most of the test goals. CovTable will contain all the

information about covered targets. The type of crossover and

mutation operators used by us are explained below and shown

in Fig. 5:

i) One-point crossover: Crossover operation acts on two

particles (or test cases) by slicing particles at a ran-

domly chosen point after the construction of target

object and before the last method invocation. The two

particles at the left can be transformed into the two par-

ticles at the right by using crossover operator. The cut

point in the first particle is immediately after the call of

f, while the cut point in the second particle is immedi-

ately before the call of g. The tails of the two cut parti-

cles are swapped, producing the results at the right. In

our proposed algorithm we have implemented in such

Fig. 5 Example demonstrating crossover and mutation

Priyanka CHAWLA, et al. A novel strategy for automatic test data generation using soft computing technique 9

a way that only one particle having higher fitness func-

tion value is selected and the other one is dropped. It is

shown with the example in Fig. 5.

ii) Mutation operator: Mutation operator acts on one par-

ticle (or test case). We have applied following type of

mutation operators:

• Mutation of parameter values: A parameter value

is replaced by a randomly generated value of the

same type. In the example shown in Fig. 5, the pa-

rameter value passed to Class B is changed from

1 to 2.

• Mutation of constructor: Constructor types are

changed in direction to improve the better fitness

particle. The constructor type in the second par-

ticle is changed by another constructor from the

same Class B having object as a parameter and

the parameter value of the constructor is modi-

fied from integer value to an object of Class C as

shown in Fig. 5.

• Mutation of methods: New method invocations

are inserted or removed. Values or objects neces-

sary as invocation parameters are also inserted or

removed shown in the example in Fig. 5.

We have implemented our proposed hybrid approach us-

ing PSO and GA in Java programming language. The opera-

tive principle of the proposed approach as described above is

also depicted through flowchart shown in Fig. 6. The objec-

tive function of test data generation optimization problem is

computed by branch coverage achieved by test case and it is

analogous to the quality or fitness of the associated solution.

4.2.1 Representation

The architecture used by us for particle is not just a combina-

tion of parameter values rather it is a sequence of constructor

and method calls with the associated parameter values. Com-

bination of parameter values can be used for procedural pro-

grams but not for object oriented software. The representation

is shown below:

P→ BV

B→ AB

A→ c(V) | c ∈| c. f (V)

V → L,V

L→ N | user − defined

N → int | real | Boolean | String

Fig. 6 Flowchart of the proposed strategy

Here P represents particle, B represents sequence of con-

structor and function instantiation represents actual param-

eters passed to the function, c represents class name and f

represents function name.

4.3 Test executor

Test case executor component is responsible for fitness func-

tion evaluation by executing the CUT with the initial random

test data generator and after that with the possible candidate

produced by optimizer. Its main goal is to report with the best

solution having optimum fitness function values which is then

used by the optimizer to initiate JUnit file generator for the

generation of JUnit file. Fitness function values are computed

with the aid of control flow graph. The control flow graph of

object oriented program is shown below in Fig. 7. The class

control flow diagram shown in the above figure shows that

upon the call of a method the control flow graph of a method

10 Front. Comput. Sci.

Fig. 7 The class control flow diagram

is created which is same as that of control flow graph of a

method of procedural program.

The fitness function chosen by us in this research work is

branch coverage. The fitness function is the ratio of edges

covered during the execution of a test case to the total num-

ber of edges that leads to the given test goal or target in a

control flow graph. Thus the fitness value would be close to

1 for the test cases which traverse most of the control edges,

while it will be close to zero when the execution path does

not coincide with the the edges leading to the test goal or tar-

get. We have also appended approximation level and branch

distance to the fitness function in order to guide the test cases

(or particles) towards the better optimal solution set.

4.3.1 Fitness function

Search based algorithms like GAs, PSO depend highly on

the fitness function guidance to find out the optimal solution

set. We have formulated multi-objective problem in which

we have chosen branch coverage and computational cost as

its constituent objectives. There is need to maximize branch

coverage whereas cost should be minimized. The quality of

branch coverage of a particle (or test case) is measured in

terms of approximation level and branch distance.

BC = A + normalize(B′), (3)

where BC is fitness function for branch coverage, A and B′

represents approximation level and branch distance respec-

tively. For a given path that does not cover the target branch,

the approximation level can be defined as number of branch-

ing nodes that are in the way between nodes covered by the

individual and the target node. Branch distance defines the

extent of closeness of the input that was supposed to satisfy

the condition of the last predicate but went wrong. The ap-

proximation level is required to point the search towards the

target branch. Branch distance directs the exploration of the

search algorithm towards optimal solution of the problem. It

acts on the branch predicates and can be calculated with the

application of the recursive rules after performing instrumen-

tation of the software under test as defined in Table 2 [38]. For

an instance, consider the control flow diagram shown in Fig.

8. The predicate values, branch distance and approximation

level is shown in Table 3. The branch distance is normalized

Priyanka CHAWLA, et al. A novel strategy for automatic test data generation using soft computing technique 11

in [0, 1] to shun the domination of branch distance over the

approximation level. The normalization has been achieved

with the following formula [39]:

normalize(B) = 1 − 1.001−B, (4)

F(TS j) = Coverage(TS j) + BC(TS j),

TS j = {TC1,TC2, . . . ,TCn}, (5)

where TCi are test cases in a TS j in a particular ordering; The

aim is to find a suitable ordering of the sequence of test cases

that achieves maximum coverage in minimal time. To decide

if TSk is better than TS j, we can write it as

⎧
⎪⎪⎨
⎪⎪⎩

F(TSk) > F(TS j)∨
F(TSk) = F(TS j) ∧ Time(TSk) < Time(TS j)

⎫
⎪⎪⎬
⎪⎪⎭

Fig. 8 Sample control flow graph

Table 2 Branch distance evaluation rules [38]

Element Value

Boolean If TRUE then 0 else K

a = b If abs(a − b) = 0 then 0 else abs(a − b) + K

a � b If abs(a − b) � 0 then 0 else K

a < b If a − b < 0 then 0 else (a − b) + K

a � b If a − b � 0 then 0 else (a − b) + K

a > b If b − a < 0 then 0 else (b − a) + K

a � b If b − a � 0 then 0 else (b − a) + K

a ∨ b min (cost (a), cost (b))

a ∧ b cost (a) + cost (b)

¬a Negation is moved inwards and propagated over a

F(S) consists of two components: coverage of a particular

sequence which is to be maximized in minimal time and the

second component is the sum of approximation level and

branch distance which is to minimized and is only used to

guide the search. Here we have also utilized the concept of

test prioritization as defined by Rothermel et al. [40] to prior-

itize the minimal test suite which covers all the branches and

detect maximum possible faults in the software under test.

The test case prioritization problem is described as below:

Given: T , a test suite; PT, the set of permutations of T ; f

is a function from PT to the real numbers.

Problem: Find R ∈ PT such that

{∀(R ∈ PT)(R � T)[f (T) � f (R)]} ,

where PT represents the set of all possible prioritization of T

and f is a function that, applied to any such ordering, yields

an award value for that ordering. Time taken can be com-

puted using the method System.currentTimeMillis(). Before

executing a particular test suite on the given CUT we stored

the current time in a variable startTime and after the execu-

tion of the CUT we have stored the current time into another

variable endTime. Execution time can be found by subtract-

ing startTime with endTime.

4.4 JUnit file generator

Its main goal is to produce JUnit file consisting of test

cases formed by the optimizer and named as final test suite

(FinalTS). JUnit file thus created can be executed using the

tool JUnit. The tool JUnit can thus generate the detailed in-

formation regarding the pass and fail test cases.

5 Experimental evaluation

To evaluate the proposed strategy carefully and to provide the

empirical evidence research questions should be designed.

We have designed the research question stated below:

Does the proposed strategy improve the efficiency of test

suite generation in terms of achieved code coverage per unit

time?

5.1 Case study

We took ten Java classes from standard Java API 1.6, pack-

age Java.util as subject to carry out the experiments. Table 4

summarizes their features. The classes chose for testing cov-

ers varied range of lines of code i.e., from 100 to 1 600 lines

of code. Moreover, these CUTs have varied internal com-

plexity that can be seen from lines of code. Fitness function

12 Front. Comput. Sci.

Table 3 Branch distance and approximation level of CFG

Node Predicate Branch distance Approximation level

0 (a � 0 ∨ b � 0 ∨ c � 0) Min((a − 0), (b − 0), (c − 0)) 0

1 (a > 1 000 ∨ b > 1 000 ∨ c > 1 000) Min((1 000 − a), (1 000 − b), (1 000 − c)) 1

2 (c = a + b) Abs(c − (a + b)) 2

3 (a � b ∧ b � c ∨ c � 2) Min(((a − b) + (b − c)), (c − 2)) 2

7 (b¬a + c) –Abs(b − (a + c)) 2

evaluations, coverage and time taken for the generations of

test suites have been obtained on an Intel Core i5-3210M

CPU notebook having 2.5 GHz processor and 4 GB of RAM.

Table 4 Features of test object

Test object LOC No. of branches

TreeList 901 23

BitSet 606 156

Stack 136 20

StringTokenizer 195 55

Vector 1 019 100

LinkedList 708 84

BinaryHeap 334 61

TreeMap 1 636 191

BinomialHeap 335 79

BinaryTree 154 37

5.2 Comparing the search algorithm

We have compared our novel strategy with the test data gen-

eration technique based upon memetic algorithms [32], eToc

[30], existing hybrid PSO and GA based strategy as proposed

by Zhang et al. [13] and with the test data generation strategy

based upon conventional genetic algorithms and PSO. eToc

is open source and we downloaded it to perform the experi-

ments on the container classes whereas we implemented the

other four strategies as explained by the authors in their work

in Java programming language. The reason for selecting the

hybrid work of Zhang et al. [13] is that we were able to get

all the details for implementing the strategy in their paper and

other existing strategies are also somewhat similar. The em-

pirical comparison of our proposed work is also necessary

with conventional PSO based algorithm to prove its impor-

tance over simple PSO based algorithms.

The updating rules in the single PSO are only based upon

velocity and distance updates which we found of no help

while modifying the test suite representations involving ob-

ject and method invocations. This approach is beneficial in

case of parameter combinations only. Moreover PSO algo-

rithms also face disadvantages like prematurity and decreased

population diversity etc. We are able to achieve the following

benefits of GA with the help of proposed strategy over single

PSO:

i) We are able to achieve fast convergence rate, reduced

complexity and avoid prematurity as compared to other

local optimization techniques like hill climbing etc. in

lesser time.

ii) We found that the application of genetic operators for

the modification of the individuals representing string

of test calls consisting of object invocations, method

and parameter combinations in between the generations

is much easier and fruitful rather than utilizing position

and velocity update rules of PSO. It is much easier to

apply crossover and mutation operation on the string

of test calls consisting of object, method and parameter

combination rather than computing position and veloc-

ity update of PSO method.

iii) We are able to achieve the increased population diver-

sity because of using genetic operators of genetic algo-

rithms.

iv) GA aided us in avoiding local optimum solutions and

increased the stability of our approach.

The above claims can be easily seen in the Table 6. We

have chosen inertia w = 0.1 and c1r1 = c2r2 = 0.2 for

simplicity. For implementing PSO velocity and distance up-

date rules we have taken the sequence of path covered by

a test suite in the control flow graph as the distance vector

and correspondingly velocity vector is updated. The test suite

representation has been taken same as that of our proposed

strategy. In the table is clearly shown that PSO based algo-

rithm are better than conventional genetic algorithm in terms

of time taken and coverage of the code but were found at a

lower end when compared with hybrid strategies.

When we compare our proposed approach with the other

existing hybrid approaches, we found and proved experimen-

tally that our approach much easier and simpler as shown in

Table 6. The existing hybrid PSO and GA based approaches

are entirely different from our approach. We have used ge-

netic operators for the modification of the individuals in be-

tween the generations rather than using position and velocity

update rules of PSO. This was done to accommodate the ob-

ject oriented structure of the container classes as it consist

Priyanka CHAWLA, et al. A novel strategy for automatic test data generation using soft computing technique 13

not only parameter values but also contains constructor and

method invocations. Pbest and gbest are evaluated from the

initial set of randomly generated population using the PSO

algorithm as explained in our proposed algorithm. Crossover

operation is applied on each particles which is further en-

hanced using mutation operation. The gbest particle is mu-

tated with the entire pbest particle set to generate another set

of candidate solution. This process is repeated until best op-

timal solution is found.

Arcuri and Yao [32] proposed a metaheuristic based upon

GA and hill climbing known as memetic algorithm. Authors

applied hill climbing technique on each generation to find

local optimum. Since application of hill climbing is com-

paratively costly so they kept population size and number

of generation at lower side. He has tested his strategy on

container classes and has empirically proved their strategy

better than random search, hill climbing, simulated anneal-

ing and strategy based upon conventional genetic algorithm.

This is the reason we selected memetic algorithm as one of

the most important strategy for comparisons. Tonella [30]

also tested container classes using conventional GA but made

some changes to the original version of genetic algorithm to

take care of the object oriented software testing.

Table 5 Parameters settings

Parameter setting MEM PSOG GA
Population size 10 50 70
Crossover probability 0.9 0.2 0.2
Mutation probability – 0.9 0.9
Rank selection bias 1.5 – 1.5

Table 5 shows the parameter settings adopted by us in

case of MEM, PSOG and traditional genetic based algorithm.

Statistical and practical differences have been computed us-

ing two-tailed Mann-Whitney U-test as per the guidelines

in [41, 42]. We have also used Vargha and Delaney’s Â12

statistics, as standardized effect size [43, 44] in conjunction

with null hypothesis significance testing (NHST). An effect

is an objective and standardized measure of the magnitude of

observed effect. Null hypothesis for our statistical test states

that there is no difference between novel strategy and the ex-

isting strategy. Alternative hypothesis states novel strategy

is better than the existing strategy. We performed pair wise

comparisons between the novel strategy and all the other ex-

isting strategies. For the comparisons we decided to choose

percentage coverage achieved per unit execution time (C) as a

criterion. As coverage should always be maximized whereas

execution time should be minimized, so percentage coverage

achieved per unit execution time should be maximized for

a better strategy. We executed all the strategies 30 times to

gather sufficient information on the probability distribution

of C, performance of all the compared strategies is shown in

Table 6. The level of significance is set to 0.05. Vargha and

Delaney’s Â12 statistics measures the probability that execut-

ing strategy X yields superior C values than executing another

strategy Y. It can be computed easily as per the following for-

mula [41]:

Â12 = (R1/p − (p + 1)/2)/q, (6)

where R1 is the rank sum of the first data group we are com-

paring. In the above formula, p is the number of observations

in the first data sample, whereas q is the number of observa-

tions in the second data sample. Results in Table 7 exhibits

positive results with high statistical confidence which cer-

tainly answers RQ. Our proposed novel strategy is better than

all other strategies except MEM in some few cases. Our novel

strategy PSOG is 100% of the time better than MEM in case

of BinaryHeap, TreeList, BitSet and Vector. The performance

of PSOG in case of TreeMap and that of StringTokenizer and

LinkedList is 80% and 76% respectively of the time better

than MEM. This is due to the following reason:

i) Our strategy intelligently retained only those particles

that possess better fitness function values resulting from

crossover and mutation operators. The other particles

were rejected and not included in the population. Our

proposed strategy is able to generate particles with best

fitness function values in much less iterations of GA

and PSO algorithm. This resulted to fastest convergence

rate. On the other hand, the memetic algorithm is quite

complex as it utilized hill climbing metaheuristic for lo-

cal optimization is quite complex as it involves much

compute intensive operations. Furthermore, by using

the combination of genetic operators to the traditional

PSO algorithm it resulted to be more exploitative and

explorative. Whereas the elitism rate and population set

of memetic algorithm are set to one and ten respectively.

ii) The test cases were prioritized and minimized effec-

tively. The redundant test cases were deleted. Thus gen-

erated test suites were compact and took less time while

execution.

The performance of PSOG has not shown remarkable re-

sults in case of Hashtable, Stack and BinaryTree. MEM

is equivalent or slightly better than our strategy in case of

Stack, BinaryTree and Hashtable. This may be due to the fact

that in these classes there is comparatively lesser number of

branches and hence the effectiveness of our strategy could not

produce remarkable difference.

14 Front. Comput. Sci.

Table 6 Comparison of the different optimization algorithms on the container cluster. Each algorithm has been stopped after evaluating up to 10 000
solutions. The reported values are calculated on 30 runs of the test.

Case study Strategy Minimum Median Maximum Mean Std. Deviation Std. Error
BinaryHeap GA 0.830 4 0.851 9 0.862 4 0.846 9 0.011 28 0.002 06

ETOC 1.179 1.192 1.22 1.197 0.017 2 0.003 139
MEM 4.963 5.222 5.588 5.258 0.260 8 0.047 62
PSOG 5.765 6.094 6.6 6.194 0.340 1 0.062 1
PSO 0.886 8 0.896 2 0.904 8 0.897 5 0.006 453 0.001 178

GAPSO 1.220 1.227 1.240 1.227 0.007 303 0.001 333
TreeList GA 0.502 9 0.514 5 0.524 4 0.513 9 0.008 948 0.001 634

ETOC 0.857 1 0.942 7 0.997 7 0.935 4 0.040 88 0.007 464
MEM 5.5 5.765 6.188 5.844 0.260 2 0.047 51
PSOG 6.667 7.071 7.654 7.131 0.412 1 0.075 24
PSO 0.599 3 0.605 0 0.613 3 0.605 8 0.004 685 0.000 855 4

GAPSO 0.956 7 0.963 6 0.985 3 0.968 5 0.012 39 0.002 262
Bitset GA 0.450 1 0.455 9 0.467 3 0.457 7 0.007 263 0.001 326

ETOC 0.562 1 0.564 7 0.565 5 0.564 1 0.001 455 0.000 266
MEM 1.153 1.193 1.207 1.184 0.023 38 0.004 268
PSOG 1.269 1.282 1.286 1.279 0.007 188 0.001 312
PSO 0.520 0 0.529 5 0.533 8 0.527 8 0.005 862 0.001 070

GAPSO 0.690 1 0.698 6 0.707 1 0.698 4 0.006 191 0.001 130
Vector GA 3.043 3.197 3.41 3.217 0.153 0.027 93

ETOC 5.389 6.188 6.533 6.037 0.487 4 0.088 99
MEM 11 12.38 12.5 11.86 0.705 3 0.128 8
PSOG 14.29 19.8 20 18.3 1.815 0.331 3
PSO 3.770 3.881 4.133 3.913 0.146 2 0.026 70

GAPSO 4.600 4.947 5.278 4.943 0.237 8 0.043 42
StringTokenizer GA 4.261 4.543 4.796 4.56 0.184 5 0.033 69

ETOC 12.13 12.38 16.5 13.2 1.433 0.261 6
MEM 16.33 19.8 33 22.31 6.242 1.14
PSOG 19.8 24.88 33.33 25.76 4.99 0.911 1
PSO 4.335 4.605 4.861 4.639 0.186 2 0.034 00

GAPSO 9.700 10.34 11.00 10.34 0.567 6 0.103 6
TreeMap GA 5.326 5.683 5.755 5.694 0.077 73 0.014 19

ETOC 12.13 12.38 16.5 13.2 1.433 0.261 6
MEM 24.5 32.67 33 29.05 4.181 0.763 3
PSOG 19.8 33.08 33.33 31.07 3.971 0.725
PSO 6.555 6.640 7.193 6.804 0.276 5 0.050 49

GAPSO 10.78 11.00 12.25 11.30 0.632 3 0.115 4
Hashtable GA 4.261 4.543 4.796 4.56 0.184 5 0.033 69

ETOC 12.13 12.38 16.5 13.2 1.433 0.261 6
MEM 33.17 49.75 50 46.55 6.765 1.235
PSOG 19.8 49.5 50 39.74 12.63 2.305
PSO 4.300 4.619 4.901 4.644 0.187 7 0.034 27

GAPSO 13.86 16.33 19.80 16.48 2.013 0.367 5
Linked List GA 4.261 4.543 4.796 4.56 0.184 5 0.033 69

ETOC 12.13 12.38 16.5 13.2 1.433 0.261 6
MEM 33 50 49.75 46.51 6.762 1.235
PSOG 33 99 100 76.97 28.77 5.252
PSO 4.400 4.684 4.944 4.722 0.190 5 0.034 78

GAPSO 13.86 16.17 19.80 15.83 1.849 0.337 5
Stack GA 6.082 6.16 7.108 6.318 0.303 3 0.055 37

ETOC 25 25 33.33 27.22 3.748 0.684 3
MEM 33.33 33.33 50 41.11 8.457 1.544
PSOG 25 33.33 50 40 9.129 1.667
PSO 7.750 8.165 8.591 8.166 0.368 0 0.067 18

GAPSO 16.67 20.00 20.00 19.11 1.499 0.273 7
BinaryTree GA 6.373 6.52 7.523 6.667 0.326 1 0.059 54

ETOC 25 25 33.33 27.22 3.748 0.684 3
MEM 33.33 33.33 50 41.11 8.457 1.544
PSOG 25 33.33 50 40 9.129 1.667
PSO 16.67 16.67 20.00 18.00 1.661 0.303 2

GAPSO 25.00 25.00 33.33 27.22 3.748 0.684 3

Priyanka CHAWLA, et al. A novel strategy for automatic test data generation using soft computing technique 15

Table 7 Comparison of percentage coverage per unit time obtained by the
novel strategy PSOG and by memetic algorithm MEM. Significant values of
Vargha and Delaney’s effect size (Â12) are shown in bold.

CUT Strategy Sum of ranks Â12

BinaryHeap MEM 465 1

PSOG 1 365

TreeList MEM 465 1

PSOG 1 365

Bitset MEM 465 1

PSOG 1 365

Vector MEM 465 1

PSOG 1 365

StringTokenizer MEM 675 0.766 67

PSOG 1 155

TreeMap MEM 639.5 0.806 67

PSOG 1 191

Hashtable MEM 1 112 0.281 67

PSOG 718.5

LinkedList MEM 675.5 0.765 56

PSOG 1 154

Stack MEM 946 0.465 56

PSOG 884

BinaryTree MEM 946 0.465 56

PSOG 884

Figure 9 shows the Box Plots showing the comparison of

all the strategies w.r.t CUT which clearly presents the perfor-

mance of novel strategy better than others.

We also performed fault seeding experiments with the aid

of Jaca2) , a fault injecting tool to assess the quality of test data

generated by our proposed strategy. We injected ten faults to

simulate classic programming errors like use of wrong rela-

tional operator, wrong parameter value and condition missing

etc. Out of our ten case study subjects test data of seven case

studies were able to detect 100% faults injected in the code,

which is highly optimal. In the case of other three case study

subjects the assertion failures was found out to be 90%. It

has been shown in Table 8. This was mainly due to the lack

Table 8 Experimental results of fault seeding

Case Study subjects Assertion failures

BinaryHeap 10/10

TreeList 10/10

BitSet 9/10

Vector 10/10

StringTokenizer 9/10

TreeMap 9/10

Hashtable 10/10

LinkedList 10/10

Stack 10/10

BinaryTree 10/10

of required data flows associated with some attributes of an

object.

Fig. 9 Boxplots percentage coverage per unit time for all the container
classes

6 Threats to validity

This paper presents the hybrid strategy for automatic test data

generation based upon PSO and GA and also contrasted it

with other test data generation strategies. Threats to construct

validity are on how the efficacy of the testing strategy is mea-

sured. We measured the efficiency in terms of branch cov-

erage per unit time and percentage of fault detected. How-

ever, we have tried to implement the strategy which works for

other test adequacy criterion also but it has not been tested.

Threats to internal validity may arise from how the experi-

mental study was carried out. To minimize the probability of

having faults in our proposed testing framework, it has been

carefully tested. Furthermore, because our strategy is based

2) Jaca Web Page, http://www.ic.unicamp.br/∼eliane/JACA.html

16 Front. Comput. Sci.

upon randomized algorithms, we repeated each experiment

30 times on each class and for the comparison of algorithms

we adopted meticulous statistical process to assess the results.

There is also the threat to external validity regarding the gen-

eralization to other types of software, which is common for

any empirical analysis. Because of the large number of exper-

iments required, we only used ten classes for our evaluation.

To make claims on generalization we will need to conduct

further studies on representative sets of classes.

7 Conclusions and future work

This paper proposed automated software test data genera-

tion for procedural and object oriented programs. The ob-

jective of minimizing the time and maximizing the branch

coverage and fault detection has been addressed. Soft com-

puting techniques like GA, PSO, MA and hybrid strategies

based on genetic and particle swarm optimization algorithm

has been implemented and compared with the proposed strat-

egy. The empirical results showed that proposed strategy usu-

ally performs better than the other algorithms. Although our

proposed strategy performs well on all the tested classes

for all other strategies under evaluation but the results on

Hashtable, Stack and BinaryTree were almost equivalent to

that of memetic algorithm. We have tested proposed strategy

on ten Java classes and the results have been very encour-

aging, but extensive research and testing should be done be-

fore any conclusions can be drawn about its effectiveness for

generic object oriented software. This would inspire us to in-

vestigate new algorithms (like bacterial foraging and cuckoo

search based testing) and new fitness functions like definition

computational use and definition predicate use to improve

performance in the future. Furthermore, additional fault seed-

ing experiments are required to evaluate the quality of test

suites generated by the proposed strategy. Future work would

be concentrated to find out the possibility of parallelization

of the proposed strategy. The feasibility of using the search

heuristic with cloud computing for the test data generation

of complex programs consisting of multiple classes would be

studied and carried out. Main emphasis would be given to de-

crease the computation time and the cost to produce optimal

test suites.

References

1. Ramler R, Wolfmaier K. Economic perspectives in test automation:

balancing automated and manual testing with opportunity cost. In: Pro-

ceedings of the International Workshop on Automation of Software

Test. 2006, 85–91

2. Grottke M, Trivedi K S. 2007. Fighting bugs: remove, retry, replicate,

and rejuvenate. IEEE Computer, 2007, 40(2): 107–109

3. Pargas R P, Harrold M J, Peck R R. Test-data generation using genetic

algorithms. Software Testing Verification Reliability, 1999, 9(4): 263–

282

4. Chen X, Gu Q, Qi J X, Chen D X. Applying particle swarm optimiza-

tion to pairwise testing. In: Proceedings of 34th Annual IEEE Com-

puter Software and Applications Conference, COMPSAC’10. 2010,

107–116

5. Windisch A, Wappler S, Wegener J. Applying particle swarm optimiza-

tion to software testing. In: Proceedings of the 9th Annual Conference

on Genetic and Evolutionary Computation, GECCO ’07. 2007, 1121–

1128

6. Wegener J, Baresel A, Sthamer H. Evolutionary test environment for

automatic structural testing. Information and Software Technology,

2001, 43(14): 841–854

7. Fraser G, Arcuri A. Evolutionary generation of whole test suites.

In: Proceedings of the Quality Software International Conference,

QSIC’11. 2011, 31–40

8. Wappler S, Wegener J. Evolutionary unit testing of object-oriented

software using a hybrid evolutionary algorithm. In: Proceedings of

IEEE Congress on Evolutionary Computation, CEC’06. 2006, 851–

858

9. Alba E, Chicano F. Observations in using parallel and sequential evolu-

tionary algorithms for automatic software testing. Computers and Op-

eration Research, 2008, 35(10): 3161–3183

10. Li K, Zhang Z, Kou J. Breeding software test data with genetic-particle

swarm mixed algorithms. Journal of Computers, 2010, 5(2): 258–265

11. Singla S, Kumar D, Rai H M, Singla P. A hybrid PSO approach to

automate test data generation for data flow coverage with dominance

concepts. International Journal of Advanced Science and Technology,

2011, 37: 15–26

12. Wu X, Wang Y, Zhang T. An improved GAPSO hybrid programming

algorithm. In: Proceedings of International Conference on Information

Engineering and Computer Science, ICIECS’09. 2009, 1–4

13. Zhang S, Ying Z, Hong Z, Qingquan H. Automatic path test data gener-

ation based on GA-PSO. In: Proceedings of IEEE International Confer-

ence onIntelligent Computing and Intelligent Systems, ICIS’10. 2010,

142–146

14. Chen S. Particle swarm optimization with pbest crossover. In: Proceed-

ings of IEEE Congress on Evolutionary Computation, CEC’12. 2012,

1–6

15. Kaur A, Bhatt D. Hybrid particle swarm optimization for regression

testing. International Journal on Computer Science and Engineering,

2011, 3 (5): 1815–1824

16. Goldberg D E, Holland J H. Genetic algorithms and machine learning.

Machine Learning, 1988 3(2): 95–99

17. Eberhart R C, Kennedy J. A new optimizer using particle swarm theory.

In: Proceedings of the 6th International Symposium on Micromachine

Human Science, 1995, 39–43

18. Kennedy J, Eberhart R C. Particle swarm optimization. In: Proceed-

ings of the IEEE International Conference on Neural Networks. 1995,

4, 1942–1948

Priyanka CHAWLA, et al. A novel strategy for automatic test data generation using soft computing technique 17

19. Rabanal P, Rodriguez I, Rubio F. A functional approach to parallelize

particle swarm optimization. In: Proceedings of Metaheuristicas, Al-

goritmos Evolutivos y Bioinspirados, MAEB’12. 2012

20. Jones B F, Sthamer H, Eyres D E. Automatic test data generation using

genetic algorithms. Software Engineering Journal, 1996, 11(5): 299–

306

21. Xanthakis S E, Skourlas C C, LeGall A K. Application of genetic al-

gorithms to software testing. In: Proceedings of the 5th International

Conference on Software Engineering and its Applications. 1992, 625–

636

22. Harman M, Jones B. Search-based software engineering. Information

and Software Technology, 2001 43(14): 833–839

23. Clark J, Dolado J J, Harman M, Hierons R, Jones B, Lumkin M,

Mitchell B, Mancoridis S, Rees K, Roper M, Shepperd M. Refor-

mulating software engineering as a search problem. IEE Proceedings-

Software, 2003, 150(3): 161–175

24. Hansen N, Finck S, Ros R, Auger A. Real-parameter black-box opti-

mization benchmarking 2009: noiseless functions definitions. INRIA

Technical Report RR-6829, 2009

25. Younes M, Benhamida F. Genetic algorithm-particle swarm optimiza-

tion (GA-PSO) for economic load dispatch. PRZEGLAD ELEK-

TROTECHNICZNY (Electrical Review), 2011, 87(10): 369–372

26. Juang C F. A hybrid of genetic algorithm and particle swarm optimiza-

tion for recurrent network design. IEEE Transactions on Systems, Man,

and Cybernetics, Part B: Cybernetics, 2004, 34(2): 997–1006

27. Saini D K, Sharma Y. Soft computing particle swarm optimization

based approach for class responsibility assignment problem. Interna-

tional Journal of Computer Applications, 2012, 40(12): 19–24

28. Wappler S, Schieferdecker I. Improving evolutionary class testing in

the presence of non-public methods. In: Proceedings of the 22nd

IEEE/ACM International Conference on Automated Software Engi-

neering, ASE’07. 2007, 381–384

29. Wilson G C, McIntyre A, Heywood M I. Resource review: three open

source systems for evolving programs: Lilgp, ecj and grammatical

evolution. Genetic Programming and Evolvable Machines, 2004, 5(1):

103–105

30. Tonella P. Evolutionary testing of classes. In: Proceedings of the In-

ternational Symposium on Software Testing and Analysis, ISSTA’04.

2004, 119–128

31. Wang H C, Jeng B. Structural testing using memetic algorithm. In:

Proceedings of the 2nd Taiwan Conference on Software Engineering.

2006

32. Arcuri A, Yao X. Search based software testing of object-oriented con-

tainers. Information Sciences, 2008, 178(15): 3075–3095

33. Nayak N, Mohapatra D P. Automatic test data generation for data flow

testing using particle swarm optimization. Communications in Com-

puter and Information Science, 2010, 95(1): 1–12

34. Ahmed B S, Zamli K Z, Lim C P. Constructing a T-way interaction test

suite using particle swarm optimization approach. International Jour-

nal of Innovative Computing Information Control, 2011, 7(11): 1741–

1758

35. Li A, Zhang Y. Automatic generating all-path test data of a program

based on PSO. In: Proceedings of World Congress on Software Engi-

neering, 2009, 4: 189–193

36. Fraser G, Arcuri A. Whole test suite generation. IEEE Transactions on

Software Engineering, 2013, 39(2): 276–291

37. Gong D W, Zhang Y. Generating test data for both path coverage and

fault detection using genetic algorithms. Frontiers of Computer Sci-

ence, 2013, 7(6): 822–837

38. McMinn P. Search-based software test data generation: a survey. Soft-

ware Testing, Verification and Reliability, 2004, 14(2): 105–156

39. McMinn P, Holcombe M. Evolutionary testing of statebased programs.

In: Proceedings Conference on Genetic and Evolutionary Computa-

tion, GECCO’05. 2005, 1013–1020

40. Rothermel G, Untch R, Chengyun C, Harrold M J. Prioritizing test

cases for regression testing. IEEE Transaction of Software Engineer-

ing, 2001, 27(10): 929–948

41. Arcuri A, Briand L. A practical guide for using statistical tests to as-

sess randomized algorithms in software engineering. In: Proceedings

of 33rd International Conference on Software Engineering ICSE’11.

2011, 1–10

42. Ali S, Briand L C, Hemmati H, Panesar-Walawege R K. A system-

atic review of the application and empirical investigation of search-

based test case generation. IEEE Transactions of Software Engineer-

ing, 2010, 36(6): 742–762

43. Vargha A, Delaney H D. A critique and improvement of the CL com-

mon language effect size statistics of McGraw and Wong. Journal of

Educational and Behavioral Statistics, 2000, 25(2): 101–132

44. Grissom R, Kim J. Effect sizes for research: a broad practical approach.

Lawrence Erlbaum, 2005

Ms Priyanka Chawla is pursuing doc-

toral program (PhD) at Computer Sci-

ence and Engineering (CSE) Depart-

ment of Thapar University, India. Her

qualifications includes B.Tech (CSE),

M.Tech(CSE). She is a dedicated re-

searcher in the field of soft comput-

ing, cloud computing and software en-

gineering. She has authored various re-

search papers and book chapters in journals of good repute. She is

member of ACM and ISTE.

Dr. Inderveer Chana is PhD in Com-

puter Science with specialization in

Grid Computing and ME in Software

Engineering from Thapar University,

India and BE in Computer Science and

Engineering. She is presently serving

as associate professor in the Computer

Science and Engineering Department

of Thapar University, India. Her re-

search interests include grid and cloud computing and other areas

of interest are software engineering and software project manage-

18 Front. Comput. Sci.

ment. She has more than 70 research publications in reputed Jour-

nals and Conferences. Under her supervision, one PhD thesis has

been awarded, two are submitted and five PhD thesis are on-going

in the area of grid and cloud computing. She is also working on two

major research projects in the area of energy aware utility and cloud

computing.

Prof (Dr.) Ajay Rana has a rich ex-

perience of industry and academia of

around 15 years. He has had an out-

standing academic record and is a prod-

uct of prestigious system throughout.

He has published more than 177 re-

search papers in reputed journals and

proceedings of international and na-

tional conferences. He has co-authored 05 books and co-edited 36

conference proceedings. He has delivered invited lectures in more

than 36 technical and management workshop/conferences programs

in India and abroad. He is a member of board of governess (BOG),

advisory council (AC), academic executive (AE) member, board of

studies (BOS) and special member of many Indian and foreign uni-

versities as well as industry. He is editor in chief, technical commit-

tee member, advisory board member for 18 plus technical journals

and conferences at national and international levels. He has received

a number of awards and honors like eduCLUSION AWARD 2014

for displaying extraordinary initiative for higher technical educa-

tion (Singapore 2014), IMTT award in Italy (2014), International

WHO’S WHO of Professionals, USA. (2014), IT Next CIO award

2011 in pune, best advisor SIFE at Mumbai in 2011 etc and was

recipient of national merit scholarship.

