Load Balancing in Cloud—A Systematic
Review

Veenita Kunwar, Neha Agarwal, Ajay Rana and J.P. Pandey

Abstract Cloud computing is an upcoming technology, which has been recently
introduced in the field of IT for delivering services that are hosted over the Internet.
It is an amalgamation of Grid computing, Utility computing, Autonomic comput-
ing, and utilizes the concept of virtualization. It provides on demand service to the
users for accessing resources, information, and software as per their needs. With
increased popularity, there has been a tremendous increase in the demands of
services by the users, which can be fulfilled by effective load balancing techniques.
Load balancing allows even distribution of workload across various nodes in the
cloud and aims to provide efficient utilization of resources, improving the system
performance, minimizing the resource consumption resulting in low energy usage.
In this paper, load balancing techniques proposed by researchers have been dis-
cussed and studied and a comparative analysis is being provided based on certain
parameters.

Keywords Cloud computing - Load balancing - Virtualization

V. Kunwar (<)) - N. Agarwal - A. Rana
Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
e-mail: veenitakunwar@gmail.com

N. Agarwal
e-mail: agarwalnehajain @gmail.com

A. Rana
e-mail: ajay_rana@amity.edu

J.P. Pandey
KNIT, Sultanpur, India
e-mail: tojppandey @rediffmail.com

© Springer Nature Singapore Pte Ltd. 2018 583
V.B. Aggarwal et al. (eds.), Big Data Analytics, Advances in Intelligent
Systems and Computing 654, https://doi.org/10.1007/978-981-10-6620-7_56



584 V. Kunwar et al.

1 Introduction

In the modern era, the Internet technology is developing at a faster rate, which has
led to increase in the number of user requests for various services, which needs to
be fulfilled in minimum possible time. For this, faster processing of servers is
required in order to respond to various client requests. Thus, cloud computing
comes into the picture.

Cloud computing is an evolutionary outgrowth of prevailing technologies that
provides hosting and storage services on the Internet. It is an on demand, virtual-
ized, location independent, pay peruse pricing model, which aims to achieve
optimal resource utilization and higher throughput. But there are also certain issues
involved like security, privacy, load balancing, fault tolerance, server consolidation.
This paper addresses the load balancing issues.

Load Balancing is one of the prime challenges in the cloud, which distributes the
tasks among multiple nodes evenly to provide proper resource utilization improving
the overall system performance. It also provides low energy usage and less rate of
carbon emission, which helps to achieve green computing.

In this paper, we have discussed and compared various load balancing algo-
rithms developed in the cloud. The rest of the paper is organized as follows: Sect. 2
gives the overview of the cloud. Section 3 describes load balancing and its types. In
Sect. 4, we discuss various load balancing algorithms with pros and cons. Finally,
Sect. 5 concludes the paper showing areas of improvement in load balancing
algorithms for the future scope.

2 Cloud Computing Overview

As defined by NIST [1] Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable comput-
ing resources (e.g., networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort or service
provider interaction. It provides various benefits like low hardware and mainte-
nance cost, accessibility, flexibility, scalability, high reliability, multi-tenancy,
quick response, faster deployment, location independence. It uses virtualization
concepts, which are the key technology used in the cloud that hides the details of
physical machines and provides virtualized resources to various applications. It can
of two kinds, namely full and paravirtualization. In full virtualization, the whole
system is installed on another system while in para, multiple operating systems
execute on a single system providing only partial services.

Cloud has four deployment models named as private, public, hybrid, and
community. Private cloud is used by a single organization and offers highest degree
control over performance, security, maintenance, reliability, deployment, and use.
They are more secure and expensive than public clouds. Public clouds on the other



Load Balancing in Cloud ... 585

hand are hosted by cloud vendors and can be used by anyone but lack control over
data, network, and security settings. Users need to pay depending on the service
used. Its benefits are low cost, on demand scalability, flexibility, location inde-
pendence, efficiency in shared resources. Hybrid cloud is a combination of public
and private cloud offering improved flexibility, scalability, and security.
Community cloud is shared among several organizations and managed internally or
by third-party service providers and are secure and cost effective.

Cloud offers three service models named as IaaS, PaaS, and SaaS. In
Infrastructure as a Service, the resources like servers, network, storage, virtual
machines, data centers, load balancers are made available by cloud providers, which
can be accessed by applications and operating systems. Examples include Amazon
EC2, GoGrid. Platform as a service provides a platform including operating system,
software development framework, database, and Web server, which makes the
development, testing, deployment, and installation of applications in a quick and
cost effective manner. Examples include Google App Engine, Microsoft Azure.
Software as a service delivers various applications over the Internet, which are
managed by a third party vendor. The users can get rid off installing and running
applications on individual systems. Google Apps is an example.

3 Load Balancing in Cloud Computing

Load Balancing is a mechanism that plays a vital role in the cloud by distributing
workload from overloaded nodes to under loaded nodes in an efficient manner to
achieve optimal utilization of resources. The load can be of any kind like load on
CPU, memory usage, delay, or load on the network. It aims to achieve maximum
resource utilization, higher throughput, minimum response time, and increased user
satisfaction. Its objective is to minimize energy consumption, enhance system
performance, accommodate future modifications, build a fault-tolerant system, and
maintain the stability of the system.

Load Balancing can be broadly classified as static and dynamic. Static algo-
rithms do not take into account the current state of the system and aforementioned
knowledge about system applications and resources is required to assign tasks at
compile time and to process new requests. They are easy to implement and well
suited for homogeneous environments. Dynamic algorithms are based on the cur-
rent state of the system. The tasks are assigned to processors at runtime. They are
complex to implement, but provide better fault tolerance and performance. They
provide efficient load balancing, but may face runtime overheads and communi-
cation delays. Dynamic algorithms can be distributed or non-distributed. The dis-
tributed algorithm involves all the nodes of the system while in non-distributed one
or some of the nodes perform load balancing. Further the distributed dynamic
algorithms can be classified as cooperative and non-cooperative. In cooperative, the
nodes try to achieve a common objective while in non-cooperative nodes work
independently toward individual goals. The non-distributed dynamic algorithms can



586 V. Kunwar et al.

be classified further as semi-distributed and centralized. In semi-distributed, system
nodes are divided into clusters performing load balancing of centralized kinds in
each cluster. In centralized, the central node performs the balancing of workload.

3.1 Load Balancing Measurement Parameters

1. Throughput—It is used to estimate the number of tasks successfully completed
in a given amount of time.

2. Overhead Associated—It tells the number of overheads associated while
implementing an algorithm.

3. Fault Tolerance—It is the ability of an algorithm to perform well even after
failure.

4. Performance—TIt checks the overall efficiency of the system.

5. Scalability—The algorithm should perform well with the increase in the number
of nodes as per needs.

6. Response Time—It is the time interval between request sent and the response
received.

7. Resource Utilization—TIt keeps the track of utilization of resources.

8. Migration Time—It is the amount of time taken for migrating tasks from one
node to another.

4 Literature Review

4.1 Decentralized Content-Aware Load Balancing

A policy was given by Mehta et al. [2] known as workload and client aware policy
(WCAP), which has a unique and special property (USP) that is used to define the
property of the service provider’s nodes as well as the user’s requests for infor-
mation. It enables the scheduler to decide an apt node that can process these
requests. Its implementation is being done in a decentralized manner with minimum
overheads.

4.2 Server-Based Load Balancing for Internet Distributed
Services

This solution was proposed by Nakai et al. [3] for balancing load that decreases the
service response time by sending requests to the nearest server avoiding their
overload. A middleware is defined that implements it.



Load Balancing in Cloud ... 587

4.3 Join-Idle-Queue

The technique was suggested by Lua et al. [4] for distributed load balancing in large
systems. Initially, the load is balanced on idle processors across dispatchers and
then, jobs are assigned to processors in order to minimize the length of the queue at
each processor. It minimizes system load and response time is decreased.

4.4 A Lock-Free Multiprocessing Solution for LB

Liu et al. [5] proposed a technique that avoids shared memory usage, unlike other
multiprocessing load balancing techniques that require shared memory and lock to
manage sessions. The performance is boosted.

4.5 A Task Scheduling Algorithm Based on Load Balancing

It was suggested by Fang et al. [6]. A two-level task scheduling mechanism is
provided in which tasks are mapped to VMs and VMs to host resources. It effec-
tively improves the response time and system performance.

4.6 Scheduling Strategy on Load Balancing of Virtual
Machine Resources

This strategy was described by Hu et al. [7], which is based on genetic algorithm. It
considers previous data and present state of the system. It avoids dynamic migra-
tion. It attains optimal resource utilization.

4.7 Central Load Balancing Policy for Virtual Machines

The algorithm has been suggested by Bhadani and Chaudhary [8] and in this load is
balanced evenly across virtual machines. It makes the system function well.



588 V. Kunwar et al.

4.8 LBVS: Load Balancing Strategy for Virtual Storage

The strategy described by Liu et al. [9] makes an available model for data storage
and storage as a service model. A three-layered architecture is used to obtain
storage virtualization, and two load balancing modules are required for balancing
the load on the system. It improves the efficiency of concurrent access, minimizes
the response time, and boosts disaster recovery. It offers flexibility and robustness.

4.9 Two-Phase Load Balancing Algorithm (OLB + LBMM)

This algorithm was suggested by Wang et al. [10] that integrates OLB (oppor-
tunistic load balancing) and LBMM (Load Balance Min-Min) scheduling algo-
rithms to have better execution. The tasks are stored in a queue, which are
performed by the manager. OLB scheduling manager assigns the job to the service
manager. LBMM algorithm chooses the apt service node, which will execute the
subtasks. OLB keeps every node in working state to accomplish the goal of load
balancing, and LBMM is utilized to curtail the runtime of each task on a node,
which helps to minimize the overall completion time. This combined approach
helps in obtaining proper and efficient resource utilization and boosts the working
efficiency of the system.

4.10 Compare and Balance

This distributed load balancing algorithm was suggested by Zhao et al. [11], which
is based on sampling to attain an equilibrium solution. A model has been imple-
mented to decrease the VM migration time using shared storage and to achieve the
zero-downtime relocation of VM by changing them as Red Hat cluster
services. Implementation is being provided by adaptive live migration of VMs.

4.11 Honeybee Foraging Behavior

A decentralized honeybee solution was investigated by Randles et al. [12], which is
based on bee’s behavior for finding and reaping food. Scout bees forage for food
sources and advertise this through waggle dance, which helps to know about the
quality, quantity, and distance of food from the beehive. They are followed by
forager bees to the food location to reap it. The tasks are considered as honeybees,
which are removed from overloaded VMs and submitted to under loaded VMs.
VMs act as food sources. The task which is removed updates the remaining tasks



Load Balancing in Cloud ... 589

about the status of the VM and gives an idea about the assignment of tasks to other
VMs based on the VM availability and load. It improves the overall throughput and
reduces waiting time of the task.

4.12 Biased Random Sampling

A distributed and scalable approach was explored by Randles et al. [12], which uses
random sampling to realize self-organization. The server load is shown by its
connectivity with each node in a virtual graph. Each server node represents a node
in the graph, in which each in-degree is mapped to the free resources of the server.
When a node starts a new job, an incoming edge is removed, which indicates that
the resources available are decreased. When the node finishes a job an inward edge
is created, which indicates that the resources available are increased. The addition
and deletion process are executed by random sampling. The walk starts from a
particular node and moves to a randomly chosen neighbor. The final node in the
walk is chosen for the allocation of the load. When a job is received by the node, it
will get executed if the job’s present walk length is more than or equal to the
threshold of walk length. Otherwise, the walk length of job, which is under con-
sideration, will be incremented and will be sent to a random neighbor. On job
completion, an edge is generated from the initiating node allocation process to the
executing job node. A directed graph is obtained at last.

4.13 ACCLB (Load Balancing Mechanism Based on Ant
Colony and Complex Network Theory)

This procedure was suggested by Zhang et al. [13]. It takes the characteristic of
complex network into account. It has excellent fault tolerance, good scalability, and
enhances system performance.

4.14 Ant Colony Optimization

Nishant [14] proposed an algorithm, which is a modified version of ACCLB and
makes use of ant’s behavior to collect information about nodes to assign the task.
He tries to resolve the issue of synchronization in ACCLB by the addition of
“suicide” feature to the ants. When a request is made the ant’s movement starts
from the “head” node. A forward movement indicates the ant’s movement from one
overloaded node in search of the other node. If an under-loaded node is found by



590 V. Kunwar et al.

ants, it will keep on moving to check the next node. If next node turns out to be
overloaded, then ant will return back to the prior node. Ant commits suicide if the
target node is found.

4.15 MapReduce

MapReduce [15] takes two major tasks: mapping of tasks and result reduction. It
involves three methods known as part, comp, and group. Initially, the part method
is executed for mapping the tasks. The request entity is divided into parts using map
tasks. The hash key table saves the key of each part and comp method compares the
parts. The group method combines the parts of similar entities through the reduce
tasks. Reduce tasks may get overloaded due to parallel reading and processing of
entities by map tasks. One more level is added, which decreases the load on the
tasks. The large tasks are divided into smaller tasks, which are sent to the Reduce
tasks.

4.16 Dual Direction FTP

The technique proposed by Al-Jaroodi and Mohamed [16] is a dual direction
algorithm from FTP servers. It splits m sized into m/2 parts. Each and every server
node processes the assigned task that depends on certain patterns. For instance, a
server starts from block 0 and downloads incrementally while some other server
begins from block m and keeps downloading decrementally. Both these servers
work independently and download the complete file to the client on best time given
the properties as well as the performance of these servers. The task is considered to
be complete when two servers download two conservative blocks and remaining
tasks are assigned to servers. It minimizes communication needed between client
and nodes and hence reduce network overhead. Load on node, network, and speed
are taken into account. It does not require any runtime monitoring.

4.17 LBMM

This algorithm has three level framework of load balancing [17]. It makes use of
OLB, which is static in nature and might cause slower processing of tasks. LBMM
enhances OLB by providing three-layer architecture. The request manager receives
the tasks and assigns it to the service manager, which divides the tasks into subtasks
to boost the processing of that request. The subtask is assigned to the service node
based on CPU space, memory.



Load Balancing in Cloud ...

591

Table 1 Existing load balancing algorithms

Algorithm

Observations

Decentralized content aware

[2]

Searching performance is enhanced with minimum idle time

LB for internet distributed
services [3]

Service response time is reduced

Join-Idle-Queue [4]

No Communication overhead but power consumption is
more

Lock-free multiprocessing [5]

Performance is improved

Task scheduling based on LB
[6]

Improved response time and proper resource utilization

Scheduling strategy on LB of
VM resources [7]

The issue of load imbalance is resolved, but migration cost is
high

Central LB policy for VMs [8]

Improvement in overall performance but no fault tolerance

LBVS [9]

Provides flexibility, robustness, and data storage

Two-phase scheduling
(OLB + LBMM) [10]

Enhanced work efficiency with optimal resource utilization
and better execution time. It is suitable for static environment

Compare and balance [11]

Load is balanced among servers, and equilibrium is attained
faster

Honeybee foraging behavior
[12]

Performs well under heterogeneous resources

Biased random sampling [12]

Performance is better but does not suit a dynamic
environment

ACCLB [13]

Suitable for dynamic environments and provides excellent
fault tolerance, scalability

Ant colony optimization [14]

It is decentralized. Network overhead occurs. Provides fault
tolerance

MapReduce [15]

Less number of overheads with high processing time. It has
high implementation complexity

DDFTP [16]

The calculation is faster. It provides reliable file download.
Full replication of data files requiring high storage. No
network overheads. Provides fault tolerance. Low
implementation complexity

LBMM [17]

Load unbalance of Min-Min is improved and reduces the
execution time. Node selection for complex tasks is not
specified

ESCE

Enhances response time and processing time but no fault
tolerance

Throttled

Current load on the node is not considered

Modified throttled [18]

Provides better response time. The index table state may
change




592 V. Kunwar et al.

4.18 Equally Spread Current Execution (ESCE)

In this, VMs are scanned. If an available VM can handle the request, then request is
assigned to it. If a VM is overloaded then some of its tasks are distributed to VM
having minimum load. It faces single point failure.

4.19 Throttled

In this, state of each VM is recorded. On arrival of the request, a table is searched. If
a match is found, then the request is accepted else —1 is returned and the request lies
in the queue. It increases the response time.

4.20 Modified Throttled

In this, a table is maintained containing a list of VMs and their states. The first VM
is selected in the same way as in throttled. On arrival of a subsequent request, VM
which is next to already assigned VM is selected and steps are followed. It provides
better response time in comparison with throttled [18] (Table 1).

5 Conclusion and Future Work

Cloud computing is a very vast domain. It is used widely in present times, and
therefore load balancing has become a huge challenge to overcome. Load balancing
is used to evenly distribute the workload among various nodes. Numerous tech-
niques proposed by the researchers have been discussed in this paper, and a
comparative analysis has been done. Each technique differs from the other and
covers some of the parameters. There is a need to develop new techniques, which
can satisfy all the parameters. In future, we will try to create new algorithms, which
will maintain trade offs among various different performance parameters. Also,
there is a requirement of energy efficient techniques that provide maximum resource
utilization and reduce energy consumption which will contribute toward green
computing.



Load Balancing in Cloud ... 593

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Mell, P., Grance, T.: The NIST definition of cloud computing. National Institute of Standards

and Technology, Computer Security Resource Center. www.csrc.nist.gov

Mehta, H., Kanungo, P., Chandwani, M.: Decentralized content aware load balancing
algorithm for distributed computing environments. In: Proceedings of the International
Conference Workshop on Emerging Trends in Technology (ICWET), pp. 370-375 (2011)

. Nakai, A.M., Madeira, E., Buzato, L.E.: Load balancing for internet distributed services using

limited redirection rates. In: 5Sth IEEE Latin-American Symposium on Dependable Computing
(LADC), pp. 156-165 (2011)

Lua, Y., Xiea, Q., Kliotb, G., Gellerb, A., Larusb, J.R., Greenber, A.: Join-idle-queue: a novel
load balancing algorithm for dynamically scalable web services. Int. J. Perform. Eval. 68,
1056-1071 (2011)

Liu, S., Pan, L., Wang, C.-J., Xie, J.-Y.: A lock-free solution for load balancing in multi-core
environment. In: 3rd IEEE International Workshop on Intelligent Systems and Applications
(ISA), pp. 1-4 (2011)

Fang, Y., Wang, F., Ge, J.: A task scheduling algorithm based on load balancing in cloud
computing. In: Web Information Systems and Mining. LNCS, vol. 6318, pp. 271-277 (2010)
Hu, J., Gu, J., Sun, G., Zhao, T.: A scheduling strategy on load balancing of virtual machine
resources in cloud computing environment. In: Third International Symposium on Parallel
Architectures, Algorithms and Programming (PAAP), pp. 89-96 (2010)

Bhadani, A., Chaudhary, S.: Performance evaluation of web servers using central load
balancing policy over virtual machines on cloud. In: Proceedings of the Third Annual ACM
Bangalore Conference (COMPUTE) (2010)

Liu, H., Liu, S., Meng, X., Yang, C., Zhang, Y.: LBVS: a load balancing strategy for virtual
storage. In: International Conference on Service Sciences (ICSS), pp. 257-262. IEEE (2010)
Wang, S., Yan, K., Liao, W., Wang, S.: Towards a load balancing in a three-level cloud
computing network. In: Proceedings of the 3rd IEEE International Conference on Computer
Science and Information Technology (ICCSIT), Chengdu, China, pp. 108-113 (2010)
Zhao, Y., Huang, W.: Adaptive distributed load balancing algorithm based on live migration
of virtual machines in cloud. In: Proceedings of 5th IEEE International Joint Conference on
INC, IMS and IDC, Seoul, Republic of Korea, pp. 170-175(2009)

Randles, M., Lamb, D., Taleb-Bendiab, A.: A comparative study into distributed load
balancing algorithms for cloud computing. In: Proceedings of 24th IEEE International
Conference on Advanced Information Networking and Applications Workshops, Perth,
Australia, pp. 551-556 (2010)

Zhang, Z., Zhang, X.: A load balancing mechanism based on ant colony and complex network
theory in open cloud computing federation. In: Proceedings of 2nd International Conference
on Industrial Mechatronics and Automation (ICIMA), Wuhan, China, pp. 240-243 (2010)
Nishant, K., Sharma, P., Krishna, V., Gupta, C., Singh, K.P., Nitin, N., Rastogi, R.: Load
balancing of nodes in cloud using ant colony optimization. In: Proceedings 14th International
Conference on Computer Modelling and Simulation (UKSim), pp. 3-8. IEEE (2012)

Kolb, L., Thor, A., Rahm, E.: Load balancing for MapReduce based entity resolution. In:
Proceedings 28th International Conference on Data Engineering (ICDE), pp. 618-629. IEEE
(2012)

Al-Jaroodi, J., Mohamed, N.: DDFTP: dual-direction FTP. In: Proceedings 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 504-503.
IEEE (2011)

Wang, S.-C., Yan, K.-Q., Liao, W.-P., Wang, S.-S.: Towards a load balancing in a three-level
cloud computing network. In: Proceedings 3rd International Conference on Computer Science
and Information Technology (ICCSIT), vol. 1, pp. 108-113. IEEE (2010)

Domanal, S.G., Ram Mohana Reddy, G.: Load balancing in cloud computing using modified
throttled algorithm. In: IEEE, International conference on CCEM (2013)



	56 Load Balancing in Cloud—A Systematic Review
	Abstract
	1 Introduction
	2 Cloud Computing Overview
	3 Load Balancing in Cloud Computing
	3.1 Load Balancing Measurement Parameters

	4 Literature Review
	4.1 Decentralized Content-Aware Load Balancing
	4.2 Server-Based Load Balancing for Internet Distributed Services
	4.3 Join-Idle-Queue
	4.4 A Lock-Free Multiprocessing Solution for LB
	4.5 A Task Scheduling Algorithm Based on Load Balancing
	4.6 Scheduling Strategy on Load Balancing of Virtual Machine Resources
	4.7 Central Load Balancing Policy for Virtual Machines
	4.8 LBVS: Load Balancing Strategy for Virtual Storage
	4.9 Two-Phase Load Balancing Algorithm (OLB + LBMM)
	4.10 Compare and Balance
	4.11 Honeybee Foraging Behavior
	4.12 Biased Random Sampling
	4.13 ACCLB (Load Balancing Mechanism Based on Ant Colony and Complex Network Theory)
	4.14 Ant Colony Optimization
	4.15 MapReduce
	4.16 Dual Direction FTP
	4.17 LBMM
	4.18 Equally Spread Current Execution (ESCE)
	4.19 Throttled
	4.20 Modified Throttled

	5 Conclusion and Future Work
	References


