
Received: 27 October 2017 Revised: 3 May 2019 Accepted: 7 May 2019

DOI: 10.1002/spe.2708

R E S E A R C H A R T I C L E

Framework for cloud-based software test data
generation service

Priyanka Chawla1 Inderveer Chana2 Ajay Rana3

1School of Computer Science and
Engineering, Lovely Professional
University, Phagwara, India
2Department of Computer Science and
Engineering, Thapar University, Patiala,
India
3Department of Computer Science and
Engineering, Amity University, Noida,
India

Correspondence
Priyanka Chawla, School of Computer
Science and Engineering, Lovely
Professional University,
Phagwara-144 411, India.
Email: priyankamatrix@gmail.com

Summary

This paper presents the framework of cloud-based software test data generation
service (CSTS) that caters to cost-effective test data generation service in a cloud
environment. In contrast to existing conventional or cloud-based testing frame-
works, CSTS has a number of unique benefits. First, CSTS is designed to facilitate
test data generation in minimum time and cost. Second, unlike existing frame-
works which mandates clients to opt for resources to test their jobs, CSTS guides
customer for selecting best cluster configuration in order to minimize the cost.
While the existing models do not provide any solution for trust establishment
in cloud computing services, CSTS delivers it by implementing security mech-
anism with the provision of role based access control. The security mechanism
proposed in this paper ensures the protection of data and code of different users.
Third, CSTS provides a mathematical pricing model to fulfill the expectations
of customers and also to maximize the net profit of service providers. Cloud
service request model has also been designed that postulates service level agree-
ments between customers and service providers. We have evaluated, compared,
and analyzed our framework and have found that it outperforms other existing
cloud-based frameworks.

KEYWORDS

cloud testing, cloud-based testing service, prediction and profiling, pricing model, security model,
software testing, testing service framework, trust

1 INTRODUCTION

Cloud computing is a popular IT paradigm that provides shared pool of configurable computing resources that can be
conveniently obtained and relinquished as required from any computing device such as laptop, tablet, mobile with mini-
mal management effort, or support from service provider.1 It provides an opportunity to software companies to focus on
innovation rather than on IT functions of procurement and maintenance that helps in saving higher financial cost. Fur-
thermore, pay-per-use model of cloud computing increases flexibility and reduces cost incurred in software development.
It supports agile software development process that helps in shortening the software development life cycle, whereas
conventional computing mode does support agile model of software development, but it is very complicated because any
replication or change in application is very complex that should be administered throughout from beginning to end.

Software testing is the most important phase of software development and software need to be tested for all possible
combination of hardware and software configurations; then, only software testing is said to be completely and adequately
performed. Cloud computing has the potential to offer virtualized commodity hardware that provides unlimited storage
in a cost-effective manner. Hence, software testing can be carried out very effectively and efficiently over cloud. Online test

Softw: Pract Exper. 2019;49:1307–1328. wileyonlinelibrary.com/journal/spe © 2019 John Wiley & Sons, Ltd. 1307

https://doi.org/10.1002/spe.2708
https://orcid.org/0000-0002-4135-0686

1308 CHAWLA ET AL.

labs available on cloud can help users to achieve quality attributes such as availability, reliability, security, performance,
scalability, and elasticity.

Cloud-based software testing has the capability to offer high-quality testing at reduced cost and time with no upfront
cost. It relieves the software companies from the burden of owning, reserving, and maintaining private test labs. The
resource requirements can be elastically provisioned and deprovisioned depending upon the complexity and size of testing
jobs. Various software industries like SOASTA, Microsoft, Rackspace, Sogeti, IBM, CloudTesting, Wipro, and HP have
worked in this direction and provided various cloud-based testing models, but still very limited academic work is available
on this subject. As per our literature review, very few work has been done that utilizes cloud computing infrastructure for
automated software test data generation by users.

In this paper, we have presented cloud-based software test data generation service (CSTS) framework that provides test
data generation service for the submitted software at optimized cost and time. In our previous work, Pareto-optimal-based
test data generation framework was devised that facilitated efficient generation of test data with better coverage and fault
detection capability.2 This work is further extended by providing a job profiling and prediction mechanism that relieves
customers in making important decisions of selecting appropriate cluster configuration to run a specific job. Additionally,
we have implemented transparent mathematical pricing model and trusted third party (TTP)–based encryption technique
that ensure secure access of data, this helps in enhancing the trust of clients.

Our proposed framework is generic enough to use any version of Apache Hadoop MapReduce to generate test data at
the back-end. The main aim of the proposed framework is to provide test data generation service at optimum cost and
time to service consumers. The cost of service depends on computational resources like CPU and memory used to perform
a given task. By utilizing the resources effectively, service providers can offer competitive prices to the service consumers.
To achieve this goal, we have used Yet-Another-Resource-Negotiator (YARN) framework that manages and schedules
resources rationally and leads to reduction in the cost. Another very important feature of CSTS is that it guides users in the
selection process of cluster and MapReduce configuration parameters such as number of virtual machines (VMs), type
of VMs, number of mappers, and reducers per VM, etc. This helps the service providers to provide service to consumers
at a reduced cost, whereas the existing cloud-based testing frameworks depend on the customer's specifications and, due
to wrong selection of cluster and mapper configuration parameters, it leads to poor resource utilization, which results in
higher cost.

Cloud computing services face significant obstructions in acceptance due to lack of trust among potential users. To build
and sustain trust, security mechanism has been implemented and role based access control has also been provided. The
proposed security mechanism ensures protection of data and code of different users that will certainly build confidence
of users in using the service.

In order to become popular among potential users, cost of service should be minimized and satisfaction level of cus-
tomers should be maximized. To address this challenge, mathematical pricing model has been designed to fulfill the
expectation of customers and also to maximize the net profit of service providers. Cloud service request model has also
been proposed that postulates service level agreements (SLA) between customers and service providers.

The primary contributions of our work are highlighted as follows:

1. Proposed the framework of CSTS that facilitates test data delivery in minimum time and cost.
2. Implementation of prompt mechanism that helps customers to select best cluster configuration.
3. Proposed a security model that can be applied in various layers. Provision of role based access control has also been

implemented. Trusted third party security support is used to assure that only registered users are allowed to access
the data.

4. Proposed a mathematical pricing model that fulfills the expectations of customers and maximizes the net profit of
service providers. The cloud service request model has also been designed that postulates SLA between customers
and service providers.

5. Experiments have been carried out to investigate the effectiveness of the proposed framework. The effectiveness of
the proposed framework is assessed w.r.t cost and time by executing it in the cloud environment and at the same time
ensures trust and privacy of user data.

6. Comparison of the proposed framework with other existing cloud-based testing frameworks.

This paper is structured as follows. Section 2 introduces Apache Hadoop YARN, Section 3 formulates the mathematical
model of the proposed work. Section 4 describes the system model of the proposed framework. Section 5 provides the
architecture overview. Section 6 includes evaluation and discussion. Section 7 discusses related work and limitations of
the existing research work and Section 8 summarizes this paper.

CHAWLA ET AL. 1309

2 APACHE HADOOP YARN

“Yet-Another-Resource-Negotiator” or MapReduce2 is the latest version of MapReduce launched by Hadoop 2.0. This
framework not only supports MapReduce processing model but also enables the execution of numerous other distributed
processing application frameworks such as MPI and graph processing. The YARN layer lies above Hadoop distributed
file system (HDFS) and below MapReduce processing layers. The resource management tasks are taken care by YARN
layers and data processing task is carried out by processing application frameworks such as MapReduce, MPI, and graph
processing. As a result, YARN is able to support clusters of large sizes more efficiently with increased scalability and agility.
The resource manager optimizes cluster utilization by offering capacity scheduling, fairness scheduling, and SLAs.

The components of YARN are defined as follows.

1. Resource Manager: Resource manager is the main entity of the YARN cluster and acts as a master to all node
managers under it. It is responsible for allocation of resources to node managers and application masters (AMs). It
also monitors applications running on node managers.

2. Application Master: An AM is an instance of framework specific library and it works with node managers and
resource managers to execute and monitor the containers with proper record of the resource consumption. It manages
and monitors the execution of application and also negotiates for resource requirements from resource manager.

3. Node Manager: Node manager allocates resources to applications in the form of containers which represent CPU,
memory, bandwidth, etc. It manages and monitors the life cycle of containers and keeps track of the usage and vigor
of resources present on each node.

4. Container: Container is an abstract entity that represents amount of resources allocated to a specific application on
a particular node. It is launched by AM on making resource request to the resource manager by invoking 'container
launch' specification API. The YARN container launch specification permits AM to collaborate with node manager
and to launch containers for different types of applications.

3 CLOUD-BASED SOFTWARE TEST DATA GENERATION SERVICE:
PROBLEM FORMULATION

A client submits his testing job for a particular software under test (SUT) that can be represented in the form of tuple
(ui, gi, tti, dj, bj,nj, tj), where ui represents jar file of SUT, gi is the test goal, tti represents the testing type, dj is the deadline
to submit test report of the submitted job, bj is the maximum budget quoted by client, nj is the number of VMs the client
can afford, and tj represents the type of VMs. For simplicity, it can be assumed that clients have capability to specify their
processing requirement. However, we have devised the mechanism of profiling and prediction that prompts the users
or clients to select an optimal Hadoop cluster configuration (HCC). However, the final decision of cluster configuration
selection is taken by clients only. This provision has been made to increase the transparency and building trust among
users or clients. The proposed framework aims the following.

1. Maximization of profit: The profit of providers is computed by finding the difference between quoted price and
total cost (TC) incurred. This can be represented mathematically as follows:

Maximize (Profit) = QP − TC. (1)

From the aforementioned equation, the profit of the provider can only be maximized when TC is minimized and the
difference between quoted price and TC is as large as possible. This infers that, if cost incurred to process a request
is minimized without compromising the quality of service, then it leads to client's cost benefits. It has been assumed
that provider specified a minimum expected return and provider accepts job only if his investment return is greater
than or equal to minimum expected return.

2. Profile and predict job's performance: The job profile provides information regarding probable execution time,
data flow, and usage of resources. The completion time of the job needs to be estimated to determine the possibility
of achieving the deadline. CProfiler aims to profile and predict the job's performance and is specified in terms of five
parameters, ie, I represents input parameters, SD represents sample data, Tvm denotes types of VM used, D represents
Data consumed or generated during map and reduce phases, and T represents time of completion for map and reduce
tasks
CProfiler(I, SD,Tvm,D,T).

1310 CHAWLA ET AL.

3. Minimization of cost to clients: The cost to client can only be minimized when provider is able to perform the job
by effectively using the resources. Then only service providers would be in a position to quote lesser price. Service
provider should be able to provide service at minimum cost without compromising quality of service or minimum
expected return. Therefore, an algorithm has been designed that effectively completes the job in the desired deadline
with lesser number of VMs. The job will be accepted only if investment return is greater than or equal to minimum
investment return. The resource usage cost is calculated as the product of the number of physical servers required to
host the virtual cluster and running time of the job
Cost of job = Running time of job X Number of physical servers required to host the cluster.

4. Minimization of job completion time: Job completion time is sum of the time spent while processing the job
(TimeR), data transfer time (TimeDT), time spent to deliver test report to the client (TimeD), and waiting time spent
during payment to gateway service (TimeWT). Hence, (JCT)j = (TimeR) + (TimeDT) + (TimeD) + (TimeWT).
The cost of job can be reduced by minimizing the job completion time
(JCT)j, ie, (JCT)j < dj, where dj represents deadline for job completion.

The cost of the job can be reduced by minimizing the required number and types of VMs. To help the client in making
this smart decision, the profiling and prediction module has been incorporated in the proposed framework.

4 SYSTEM MODEL

In this section, an overview of high-level architecture of the proposed framework has been presented. The main objective
of the proposed service framework, CSTS, is to facilitate trustworthy and cost-effective test data generation service. As
depicted in Figure 1, the system model comprises of application and platform layer functions. At the platform layer,
Apache Hadoop YARN is installed to form a cluster. The application layer function comprises of client requests for testing
the software. It starts with submission of SUT, test goal, testing type, and quality of service (QoS) parameters such as
deadline, budget, etc. Inputs from clients are converted into a test description file (TDF) and submitted to optimizer for
further processing. The job is accepted for test data generation only if software as a service (SaaS) provider is able to make
sufficient profit. Acceptance approval is taken from admittance algorithm and thereafter accepted request is submitted to
the starter and the TDF is saved to the HDFS. The starter invokes the optimizer which computes test data of the submitted
software by forking into several MapReduce jobs. The MapReduce jobs are sent to YARN in the platform layer where
all tasks pertaining to scheduling and actual execution on the nodes are performed. The monitor module keeps track of
resources usage while job execution and saves it as a separate file on the HDFS. This file is used by cost evaluator for
computation of cost and bill generation.

FIGURE 1 High-level architecture of proposed framework.
HDFS, Hadoop distributed file system; SLA, service level agreement;
SUT, software under test; YARN, Yet-Another-Resource-Negotiator
[Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com

CHAWLA ET AL. 1311

FIGURE 2 System architecture of proposed framework [Colour figure can be viewed at wileyonlinelibrary.com]

5 ARCHITECTURE OVERVIEW

The architecture of proposed framework is based on master/slave communication model. Figure 2 shows the system level
architecture and its basic components, ie, starter, optimizer, cost evaluator, and YARN cluster (YARN master and YARN
slave nodes).

5.1 Starter
It is a front end component that accepts SUT, budget, and time deadline from the client as an input. The constituent
modules are GUI interface, security and authentication, job profiling and prediction, admittance strategy, and test report
submission.

1. GUI Interface: It provides the graphical user interface where user can login and once authenticated can make request
to test SUT through the web browser.

2. Security and Authentication: The primary objective of the proposed security model is to ensure the following:

(a) Role-based access control for authorization.
(b) Authentication by using symmetric cryptosystem.

http://wileyonlinelibrary.com

1312 CHAWLA ET AL.

FIGURE 3 Security model of
the proposed framework[Colour
figure can be viewed at
wileyonlinelibrary.com]

(c) TTP-based mechanism that facilitates the following:

• Encryption of uploaded code and data by using symmetric key algorithm (eg, advanced encryption standard
(AES)).

• Secure exchange of secret key (SK) by using public key symmetric algorithm (eg, Rivest-Shamir-Adleman
(RSA)).

• Communication with reliable associate (RA) on behalf of service provider or user.

The security challenges of cloud-based testing framework have been addressed by incorporating symmetric cryptosys-
tem for authentication and a role based access control for authorization. Security mechanisms have been implemented
at multiple stages by provision of role based access control for protection assurance of code and data of clients.
Role-based access control is used since it is a unified model that supports real-world access control requirements for
large scale authorizations.3 We have defined two modes of client roles, ie, owner/user and RA. A client who has sub-
mitted a job for test data generation is treated as an owner/user. The owner may share test data with other groups of
community such as testers, developers, and research groups for consultation on specific issues. These groups of people
are termed as RA. The process of creation, modification, and removal of RA is named as MngRA. Reliable associate
is further divided into tester (RAT), developer (RAD), and researchers (RAR) classes based on the permissions granted
to them. The tester is given the permissions of editing the code uploads, developer is allowed to view test data, and
researchers are allowed to download the strategy of test data generation and view the test data. Identification of a
client is carried out by his user name and password. Since data security is the foremost apprehension of customers
using cloud services and this may be due to lack of trust between service provider and the customers,4 therefore, to
enhance the trust relationship between the parties, TTP security support has been used to assure that only registered
and legitimate users are allowed to access the data.5 The authenticated users are allowed to access the resources based
upon authorization roles associated with user id. The user possessing the role of owner can create a number of RA
and assign different authorizations to them labeled as (RAT,RAD,RAR). The model is shown in Figure 3.
Encryption of user's code can either be performed by the user itself or this task can be automated by calling encryption
and decryption algorithm for each write and read request of a code file or SUT on HDFS. In our proposed framework,
we have designated this task to starter module of the proposed framework. The scheme of proposed security model
that ensures protection of SUT or code is shown in Figure 4 and illustrated as follows.

(a) The submitted SUT is encrypted by using the AES. We have adopted 128-bit AES to perform user-side encryption.6
Advanced encryption standard is one of the most popular block cipher algorithm and suitable to handle HDFS
blocks. The submitted file or SUT will be divided into fixed size multiple blocks b1, b2....bn, where the size of each
block can be up to 16 bytes. Each block of data is processed through ten recurring sequence of encryption iterations
before the final encrypted file is produced. During each iteration of encryption, four distinctive operations are
performed on block of data bi using a unique key ki. Initially, a byte-to-byte substitution (Si) is performed on
the block bi using a table called as substitution box. In the second step, row-by-row permutation function (Pi) is
performed. This is followed by another round of data substitution (Sj) and in the fourth step, bitwise exclusive or
(XOR) operation is performed between current block and its corresponding key. The output can be represented as
RSi = li ⊕ (gi, Sj(gi,Pi(gi, Si))), where RSi represents the output of ith recurring sequence and li is the encryption
key for data block bi.
The aforementioned step has been shown as (a) in Figure 4.

http://wileyonlinelibrary.com

CHAWLA ET AL. 1313

FIGURE 4 Exchange of
messages between stakeholders to
ensure data confidentiality. AES,
advanced encryption standard;
HDFS, Hadoop distributed file
system; SUT, software under test

(b) Once the SUT is encrypted, the cipher text is transmitted to HDFS over a secure communication channel.
The aforementioned step has been shown as (b) in Figure 4.

(c) The SK is encrypted by using RSA algorithm for secure transmission to TTP. This has been achieved in two steps.
In the first step, SK is encrypted by using the public key of TTP(PTTP). Hence, encrypted copy of secret key
CSK = E(PTTP, SK).
In the second step, digital signature is produced by using the private key of user (R → user) so that it can be
authenticated by the TTP
DS = ER→user(E(PTTP, SK)).
The proposed service framework would generate different keys for different users and these keys would be
transmitted securely to TTP.
The above aforementioned has been shown as (c1), (c2), and (c3), respectively, in Figure 4.

(d) Upon request from RA for access to a particular SUT and its associated test data or report, TTP verifies the identity
of RA by performing decryption such that DP→RA(ER→RA(MD)) = H(di), where H is a cryptographic hash function

1314 CHAWLA ET AL.

implemented on a small block of data di. Once the identity of RA is verified, corresponding SK of user Ui is retrieved
and sent to the corresponding RA by using RSA encryption algorithm such that (EP→RA(SKuser)).
The aforementioned step has been shown as (d1), (d2), and (d3), respectively, in Figure 4.

The benefits of the proposed security scheme are as follows.

(a) Reduction in time and cost: The encryption of data and code has been done by using symmetric key algorithm
(AES), which is comparatively easier to apply than asymmetric key algorithms. The symmetric key algorithms are
usually fast and help in the reduction of time. Moreover, cipher text produced after the application of symmetric
key algorithm is same as that of input text whereas the size of cipher text produced after applying asymmetric key
algorithm is larger than the input text. Thus, it helped us to achieve reduction in storage space.

(b) The use of RSA algorithm has helped us in secure exchange of SK among the proposed framework, TTP, and RA.
Hence, benefits of both symmetric and asymmetric algorithms have been incorporated in the proposed scheme.

3. Job Profiling and Prediction: This module is responsible for suggesting customers to select an appropriate cluster
configuration that helps in achieving timely completion of jobs within specified performance and cost constraints. As
per our knowledge, in the present state of the art, users are required to specify the Hadoop cluster configuration as per
the size of the job.7,8 The user specifies values for all configuration parameters. For the parameters whose values are not
specified by the user, system administrator uses the default values. These parameters have big impact on performance
and cost of the job. The burden and complexity of this process can be overcome by job profiling and prediction and,
thus, we have designed a module named as CProfiler to carry out this task. It is somewhat similar to the work proposed
by various eminent researchers.8-10 Our approach is different in the way as explained as follows.
CProfiler uses dynamic instrumentation to collect the job profiles. A MapReduce job profile collects some unique
aspects of data flow or cost during job execution at the task level or phase level within tasks. A profile is compact
representation of job execution that captures information both at task and subtask levels. The job profile provides
information regarding execution time, data flow, and usage of resources. CProfiler functions in three parts.

(a) First part collects information about operation of MapReduce jobs and creates an analytical expression.
(b) Second part profiles the tenant job with sample data and produces the parameters related to the job and

infrastructure.
(c) Third part estimates the job completion time.

The MapReduce jobs are executed in three phases, namely, map, transfer, and reduce. Normally, these three phases
execute in sequential manner for a job. The completion time for a job can be estimated by summation of time required
to compete these three phases

Ti = TM + Tt + TR, (2)
where TM, Tt, and TM are the time required to complete the map phase, transfer phase, and reduce phase, respec-
tively; then, let NM represent the number of cycles required to execute the tasks of map phase, and then TM can be
measured as

TM = NM ∗ (DM ÷ PBM), (3)
where DM is the data consumed during execution of map phase and PBM is phase bandwidth (PB) of map phase.
In the same manner, we can calculate Tt and TR.
Given a job J, input data size SI, sample data size SMPi, and network bandwidth between VMs NT, CProfiler calculates
the estimated completion time of the job
CPro𝑓 ile(Sj,VMT, SMPi,NT, J,DM,DR,TM,TR) → Tj,

where VMT is type of VMs; DM and DR are data consumed or generated during map and reduce tasks.
TM, TR represents completion time for map and reduce tasks.
The PB of individual phases is determined by using the similar analytical model as proposed in other works.8-10 It
works by computing following three parameters:

• PB;
• data consumed;
• waves.

CProfiler profiles the job by executing it on a single machine with a sample of input data. It calculates the amount of
data consumed and generated during each phase and also the execution time for each task. The log files of this process

CHAWLA ET AL. 1315

are used to collect the information that leads to determine the PB. Afterwards, based on this information, it calculates
the data consumed and estimated job completion time.

(a) Phase bandwidth: Phase bandwidth can be calculated as follows:
PBR = (IOB,DR∕t)min.
During transfer phase, reduce tasks performs read operations on intermediate data and write operations on the
disk. Afterwards, data is read from disk and finally stored in memory before it is consumed by reduce phase. Let
NB be bandwidth of network; the transfer PB can be calculated by inversing the summation of inverse of disk I/O
bandwidth and minimum of network bandwidth NB and disk I/O bandwidth
Trans𝑓erB = IOB ∗ (IOB,NB)min ÷ IOB + (IOB,NB)min.

(b) Data consumed:
For a job j with M map tasks and R reduce tasks, we take size of input Si,
data consumed by each map task = Si ÷ M bytes, and
data consumed by each reduce task = Si ÷ (AM ∗ R) bytes,
where AM is average number of records output by map tasks per input second.
Data generated by each reduce task = Si ÷ (AM ∗ R ∗ R) bytes,
where AR = average number of records output by reduce tasks per input record

(c) Waves (NM): For a job using x VMs with Ms map slots per VM, maximum number of mappers = x × Ms,
map tasks execute in M ÷ (x × Ms) waves,
and reduce tasks execute in R ÷ (x × Rs) waves,
where Rs is number of reduce slots per VM.
Now, for map phase, TM = M ÷ (x × Ms) × ((Si ÷ M ÷ PBM)
In the same manner, TR and Tt can be calculated.
The estimated job completion time is evaluated using the following:
Tj = TM + TR + Tt

T𝑗 = [M ÷ (x × Ms) × ((Si ÷ M) ÷ PBM)]
+ [R ÷ (x × Rs) × ((Si ÷ (AM × R)) ÷ PBT)]
+ [R ÷ (N × Rs) × ((Si ÷ (AM × AR × R) ÷ PBR)] .

(4)

4. Admittance Strategy: The job is submitted to optimizer only if it is approved by admittance module of the starter.
The job is admitted only if service provider is able to make profit by executing the job. The flowchart of admittance
strategy is shown in Figure 5. After the admission of job, TDF is stored on HDFS and the optimizer is invoked for test
data generation.

5. Test Report Delivery: The generated test suite is delivered to the client in the form of JUnit test file after receiving
payment.

5.2 Optimizer
This component is responsible for computing test data of submitted application. Test data generation (TDG) strategy has
been implemented by using the computational intelligence of genetic and particle swarm optimization algorithm. The
test data generation process has been parallelized by distributing the task among multiple mappers. The mapper module
performs the tasks in parallel pertaining to test data generation for multiple class files in a jar file. The strategy has been
explained in detail in our previous work.2 It also keeps track of number and type of resources utilized during the generation
of test suites and its output acts as input to the cost evaluator.

5.3 Cost evaluator
The proposed framework is meant to operate in both public cloud infrastructures and private clusters. Unlike owning
a private cluster, the economical way is to acquire the required resources on pay-as-you-go subscriptions. The resources
represent computing machines and storage space. The incurred cost will be much lesser than the cost of acquiring and
operating a private cluster of the same size.

The cost evaluator evaluates the cost of test data generation based on four parameters, namely, test goal, cost budget,
size of SUT, and testing type. The test goal defines the stopping criteria of TDG. The cost budget indicates the upper limit
of the chargeable amount the client could afford. The testing type represents the alternative choices for testing levels such

1316 CHAWLA ET AL.

FIGURE 5 Flowchart of admittance strategy. YARN,
Yet-Another-Resource-Negotiator [Colour figure can be viewed at
wileyonlinelibrary.com]

as unit testing, system testing, etc. Presently, this work offers unit testing to the client. In the future, other testing levels
may also be offered to the clients in the form of various choices.

The number and type of resources depend upon the size of the SUT, test goal and cost budget, and the number and type
of resources required is estimated based on the values of these inputs. For branch coverage, the client will be charged a
telescoping amount $x for each percentage point of coverage. For crash points, $y will be charged for each crash inducing
defects. Both $x and $y is proportional to the size of the SUT

Bill = n1 ∗ x + n2 ∗ 𝑦, (5)

where n1 denotes the percentage coverage of SUT, n2 denotes the number of faults detected, and
Bill <= Cost Budget.

Pricing model
Pricing is the process whereby a service provider fixes price at which it will provide its services to the users. Pricing
approach can be either fixed or dynamic. The factors that affect the pricing in cloud computing are as follows11-14:

http://wileyonlinelibrary.com

CHAWLA ET AL. 1317

• initial cost,
• lease period,
• QoS,
• types of resources,
• maintenance cost,
• comparison with other service providers, and
• supply and demand of services.

A customer evaluates the pricing model mainly by pricing, QoS, and usage type. The pricing can be fixed regardless of
volume. In the fixed price plus per unit charges, the customer pays a fixed price plus a unit rate. In assured purchase
volume plus per unit price rate, customer pays fixed price for certain quantity and pays per unit if usage exceeds the limit.
In per unit rate with a ceiling, customer pays per unit rate with a certain limit. In per unit price, customers pay per unit
price of resources. The service provider with high level of QoS (such as availability, security, privacy, scalability, integrity,
etc) attracts an increased number of loyal customers. The usage period defines the time period during which a customer
can utilize the services as per SLA between the two parties. The usage period can be perpetual or by subscription or
pay-per-use.

The most common pricing model used by service providers is pay-per-use model, in which user is charged a fixed price
for each hour VM usage. In recent years, cloud computing has driven shift in the computing paradigm, which allows
service providers at different layers (application, platform, and infrastructure) to offer computing services on demand and
pay as per the usage. Nowadays, customers using the SaaS model need not to worry about purchasing a license from a
software company for installing, upgrading, and maintaining the software. Rather, customer buys services on rent from
the service providers and relies on them for the acceptable QoS requirements, upgradations, and maintenance. To fulfill
the expectations of customers and maximize the net profit of SaaS providers, cloud service request model needs to be
designed in such a way that it postulates SLAs between clients and service providers. Service level agreement defines
the officially authorized agreement between a service provider and a user that states quality of service and its analogous
proceedings. It also states the response time, customer budget, and penalty in case of performance breakdown among
other things. Considering the aforementioned explanation and various work related to design of profit model of service
providers,11-14 we have defined user service request of the proposed framework as follows:

f (USR)=f (B, TCL, TDL, 𝛽, TC).
The parameters to the f (USR) are maximum price allocation (B), job completion time (TCL), penalty delay time (TDL),

penalty rate (𝛽), and TC Incurred (TC). The pricing model of our proposed framework is given as follows.
Let a new user submit a service request at submission time (arrival time) Ta to the service provider. The new user

provides the following parameters:

• maximum price (budget) represented as B,
• deadline represented as TDL, and
• penalty rate represented as 𝛽.

Let service provider provide x types of VM, where each VM type has PVM price. The prices per GB charges for data transfer
in and out by the provider are Pin and Pout, respectively.

Let Din and Dout be the data-in and data-out required to process the user request. Let TCi be TC incurred to provider
while processing the user request on VMi of type x. Then, the profit gain by the provider is defined as

Profit = B − TCi. (6)

The TC incurred by the provider for accepting the new request depends on the request processing cost (CR), data transfer
cost (CDT), VM initiation cost (CVM), and penalty delay cost (CPD). Thus, TC (TC) is given by

TC = CR + CDT + CVM + CPD. (7)

The request processing cost (CR) is dependent on request processing time (TR) and hourly price of VM (HPVM).
Thus, (CR) is given by the following:

CR = TR ∗ HPVM . (8)

1318 CHAWLA ET AL.

Data transfer cost can be described as summation of cost of both data-in and data-out

CDT = Din × Pin + Dout × Pout. (9)

The VM initiation cost is dependent on the type of VM initiated. Let TVM represent time taken for initiating VM

CVM = PVM × TVM . (10)

The penalty delay cost (CPD) represents the penalty levied to service provider for violating the SLA. It is dependent on
penalty rate 𝛽 and penalty delay time period (TPD).

Let TCL be the job completion time. The TPD is defined as

TPD = TCL − TDL (11)

and
CPD = TPD × 𝛽. (12)

The job completion time for the new request to be processed on VMi consists of VM initiation time (TVM), request service
processing time (TR), data transfer time (TDT), and penalty delay time (TPD)

TCL = TVM + TR + TDT + TPD, (13)

where data transfer time TDT is summation of time taken to upload the input (Tin) and download the output (Tout)

TDT = Tin + Tout. (14)

The investment return (IR) to accept new user request per hour on a particular VMi is calculated based on profit and time
(TCL)

IRi = Profiti ÷ TCL. (15)
The (IR) can be maximized by maximizing profit, which, in turn, can be achieved by minimizing TC. Minimization of TC
is subject to following constraints:

1. TPD → 0, which can be achieved by job profiler by optimizing the time required for job completion.
2. CDT can be minimized either by storing local data on HDFS or by using S3 bucket whichever is nearer to the location

of Hadoop cluster. Hence, TC primarily depends upon CR and CVM.
Therefore,

TCi =
l∑

i=1

m∑

𝑗=1
R𝑗 × HPVM𝑗 + PVMi × TVMi. (16)

3. Minimize job completion time: The cost of job can be reduced by minimizing the required number and types of VMi.
To help the client in making this smart decision, the profiling, and prediction module has been inculcated in our
proposed framework.

The job will be accepted only if IR is greater than or equal to minimum investment return. If the job is accepted, it will
be executed as per the sequence defined in the proposed framework. After completion of test data generation task, cost
evaluator generates bill according to the pricing model explained above. The client pays the bill through payment gateway
and, after successful payment, payment gateway sends confirmation message to the starter module, which then get test
suites from HDFS and submits to the client. The method used to generate bill (cost to customers) using the proposed
pricing model is explained as follows with the help of working example.

Working example: using pricing model to generate the actual bill
Suppose a user submits a service request with following parameters:

1. Maximum Price (Budget) B = $1000;
2. TDL = 60 min;

CHAWLA ET AL. 1319

3. Penalty Rate = 10;
4. Job Size = 4 × 1 000 000 MI.

Let user select the cluster configuration of Amazon EC2 with two VMs after getting the prompt from the service provider.
Suppose the cluster configuration is 1933MIPS, $0.12 per hour, Ubuntu 12.04, 4GB RAM, 2ECU, and 160GB disk space.

After the selection of number and types of VM, estimated profit is calculated as follows:

1. Service Request Processing Time TR = (4 × 1 000 000) ÷ 1933.
Hence, (TR) = 34.4 min.
Therefore, CR = TR × HPVMCR = 7.2 × 34.4.
Hence, CR = $247.68 per VM.

2. CVM = PVM × TVM.
Hence, CVM = 7.2 × 5 (Mean value).
Hence, CVM = $36 per VM.

3. CDT is minimized by using local storage or using S3 bucket.
Therefore, CDT = $20 per VM.

4. TDT = 0, as we profile and predict the job to achieve the deadline.

As per equation, TC = 247.68 + 247.68 + 36 + 36 + 20 + 20.
Hence, TC = $606.68.
Let the minimum expected profit of service provider be 20% of the user budget. Min Expected Profit = (1000×20)÷100.
Min Expected Profit = $200.
Min Expected Investment Return = Profit ÷ deadline.
Hence, Min Expected Investment Return = $200 ÷ 1.
Min Expected Investment Return = $200.
Expected Investment Return = Profit ÷ TCL = (1000 − 606.68) ÷ 0.866.
Hence, Expected Investment Return = $453.97,
where TCL = 52 mins
TCL = 0.86 hour.
Therefore, Expected Investment Return > Minimum expected investment return. As a result, the user job will be

accepted.
Bill = n1 × x + n2 × y
Let x = $3
y = $.08 per crash point.
Therefore, Bill = 90 × 3 + 8000 × .08
Hence, Bill = $650.

5.4 Yet-Another-Resource-Negotiator cluster
It constitutes YARN master and YARN slave nodes. The YARN master is invoked by optimizer module of our proposed
framework for execution of MapReduce jobs to generate test data of SUT. The YARN slave node includes node manager,
data node, and containers.

Yet-Another-Resource-Negotiator master
The YARN master is invoked by optimizer for execution of MapReduce jobs to generate test data of the submitted SUT.
It manages several slave nodes and jobs executed over them. The two main components of YARN master are sched-
uler and AM service. Scheduler is responsible for monitoring and distribution of various resources (CPU, memory, and
bandwidth) to slave nodes. It also handles remote procedure call interface with client such as application submission,
application termination, and obtaining queue information and cluster statistics. An Application master is an instance of
framework-specific library and it works with node managers and resource managers to execute and monitor containers
and their resource consumption. It negotiates for resource containers required to execute specific jobs. The AM service
keeps track of all applications, which are being executed on node manager, and maintains a list of live and dead AMs.
It is also responsible for managing register/unregister requests from AMs, and allocation and deallocation of container
requests from the AM.

1320 CHAWLA ET AL.

Yet-Another-Resource-Negotiator slave
It includes node manager, data node, and containers. The node manager manages each and every slave node in YARN
cluster and monitors the containers and their lifecycle. In addition, it keeps track of health and resource usages of YARN
clients. 'Container' is an abstract entity that corresponds to resource elements (CPU, disk, network, etc) necessary for
execution of applications. A resource request is made by an application for specific resources and is granted by scheduler
in the form of container.

5.5 Job execution flow
The job is said to be submitted when admittance module approves request of a client to test the software. The admittance
module accepts job only if service provider gains profit by executing the job. The profit is calculated with the help of
pricing model described in the previous section. Once it is approved, optimizer module invokes TDG to generate test
data by creating MapReduce job and invoking several mappers and reducers on the slave machines in the YARN cluster.
After that, the role of YARN cluster comes into the picture. The steps of job execution are summarized as follows and are
depicted in Figure 6.

1. Job Submission: Client submits the job to starter by submitting SUT, test goal, testing type, and by stating its
budget and time deadline.

2. Job Id: Client receives its Job ID.
3. Save Job Data: The job data is saved on HDFS or S3 bucket.
4. TDF file generation: Test description file (TDF) file is generated. It contains the details needed for test data

generation. This file is given as an input to the optimizer.
5. HHC file generation: The HCC file is generated by prediction module of our proposed framework. It contains

preferable HCC. It helps clients to intelligently choose an optimal HCC for test data generation at minimum cost
and time.

6. Start Optimizer: Optimizer is started by initializing the population and generating random population. It is
further accompanied by a call to the modules like instrumentor, TDG, and monitor.12

FIGURE 6 Sequence diagram of proposed framework. HCC, Hadoop cluster configuration; HDFS, Hadoop distributed file system; TDF, test
description file; TDG, test data generation; YARN, Yet-Another-Resource-Negotiator [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com

CHAWLA ET AL. 1321

7. Start TDG: Test data generation is started.
8. MapReduce Job Creation: MapReduce job is created by selecting Hadoop cluster intelligently as per the

recommendations of profile and predict module of the proposed framework.
9. Request and Acquire Resources: The YARN cluster grants resources based on the request and the granted

resources are acquired for test data generation.
10. MapReduce Job Execution: MapReduce job is executed on the acquired resources.
11. Monitor Resource Usage: Resource usage is monitored by the monitor module of optimizer, which instructs the

cost evaluator to generate the bill.
12. Save Resource Usage File: Resource usage file is saved on the HDFS for further use and reference.
13. Job Completion: Job completion notification is sent by YARN cluster to the cost evaluator.
14. Generate Bill: Upon receiving the job completion notification, cost evaluator generates bill. The information of

generated bill is sent to the payment gateway.
15. Payment Receipt: The payment gateway upon receiving the payment notifies the cost evaluator about it.
16. Notify Completion: Completion report is notified to the optimizer by the cost evaluator.
17. Notify Delivery: Optimizer instructs the starter for delivery of test report and JUnit file.
18. Test Data Delivery: Test data in the form of JUnit file is delivered to the client.

6 EVALUATION AND DISCUSSION

In this section, we have analyzed the performance of the proposed framework over local cluster as well as on AWS cluster.
The proposed framework is assessed w.r.t cost and time by executing it in the cloud environment, and also ensures trust
and privacy of user data.

6.1 Experimental setup
The performance evaluation of the framework has been carried out on a public cloud Hadoop cluster over Amazon elastic
compute cloud (EC2)15 as well as on a local Hadoop cluster.

Public Cloud: The experiments have been carried out by using Amazon EC2 compute instances. For the evaluation
purpose, two different types of Amazon EC2 instances have been used. These instances vary in the number of vCPU,
memory allocated to them, instance storage, and network performance. Ten nodes cluster have been formed in which
m1.large instance has been made as master (namenode and resource manager), while other nine m1.medium instances
acted as slaves (nodemanager and datanodes). Each node runs Ubuntu 12.04 and Apache Hadoop version 2.2.0. HDFS
consists of a master (name node) and multiple slaves (data nodes).

Local Cluster Setup: We took 10 nodes in the cluster, each having the hardware configuration as Intel Core i7-4980HQ
CPU as processor with four cores having 2.8 GHz processor speed, 8 GB of RAM, software configuration as Hadoop version
2.2.0, and Ubuntu 12.04 on the machines. One of the nodes is made the master, while other nine acted as slaves. The
network speed is 1 Gbps and the nodes are connected through a single switch.

6.2 Performance evaluation
Hadoop distributed file system can be described as scalable and fault-tolerant distributed file system that can be installed
very easily and efficiently on low-price hardware. The architecture of HDFS is based on master/slave framework in which
there is a single master node and arbitrary number of slave nodes. The master node is called as name node whose goal
is to regulate file system namespace as well as file-access operation of multiple slave nodes. The slave node is named as
data node and is responsible for the file storage and storage device management. HDFS utilizes a traditional hierarchical
file structure in which files can be created and stored within directories. Files are bifurcated into blocks before storing
it on data nodes so that a file can be accessed in parallel for read and write operations. The replication factor of each
block is kept at three by default and mapping between blocks of a file and datanodes is being maintained by master node.
MapReduce programming model has the ability to process several HDFS blocks in parallel. In our model, the input data
(SUT, test data, etc) submitted by the user has been encrypted and decrypted before it is written and read from the HDFS.
We use 128-bit AES encryption algorithm as it is most appropriate to handle HDFS blocks. There are various modes
of operation for AES such as ECB, CBC, OFB, CFB, CTR, and XTS; we have selected AES ECB modes as it supports
concurrent computation and is thus more suitable for distributed environment–based computing. In the next section, the

1322 CHAWLA ET AL.

FIGURE 7 Time of advanced encryption standard (AES) versus
generic Hadoop distributed file system (GH) in write operation
[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Write throughput of advanced encryption standard
(AES) versus generic Hadoop distributed file system (GH) [Colour
figure can be viewed at wileyonlinelibrary.com]

performance of encrypted HDFS and unencrypted HDFS (generic HDFS) has been compared for write and read operations
w.r.t time and throughput.

6.2.1 File write and read operation
The file is written in the form of encrypted chunked blocks to datanode by HDFS client. The blocks are encrypted by
implementing AES encryption algorithm in Java. The HDFS client is also responsible for replication of encrypted blocks
to other data nodes. Generic HDFS and encrypted HDFS have been compared w.r.t time, as shown in Figure 7. The size
of the file has been varied from 256 MB to 512 GB. It clearly depicts the time taken to write a 512 GB file to HDFS is
224.56 minutes and 284.44 minutes has been taken to encrypt a file in HDFS, which exemplifies performance degradation
of 27%. The throughput of writing files in generic HDFS is 38 Mbps, whereas throughput in case of AES encrypted HDFS
is 30 Mbps. The same has been portrayed in Figure 8.

With the implemented algorithm, reading of encrypted file stored in the form of blocks in HDFS is carried out in
parallel by map tasks at HDFS datanodes. The decryption of the encrypted file is also performed in parallel which helps
in attaining better performance than file-write operations. Figures 9 and 10 show the performance of MapReduce jobs on
unencrypted or encrypted HDFS. We observed 294.25 minutes was taken for unencrypted HDFS for 512 GB file, while
316.04 minutes for the encrypted HDFS. The overhead for decrypting file is 7% (maximum) in the case of 512 GB file.

The aforementioned experiments lead to the interpretation that, although there is degradation in performance while
uploading encrypted files to HDFS, it helps in attaining trust and privacy of users data.

6.3 Cost comparisons: local cluster versus AWS
In addition to aforementioned analysis, we also evaluated the cost required to set up our cloud-based framework locally
in the lab and the equivalent system required with its associated cost.

To perform the experiments, we have selected the t2.medium AWS instance.16 The price of t2.medium = $0.052/hour.
Hence, the cost of 10 AWS instances is

Caws = $0.52. (17)

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

CHAWLA ET AL. 1323

FIGURE 9 Time of advanced encryption system (AES) versus
generic Hadoop distributed file system (GH) in read operation
[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 10 Read throughput of advanced encryption system
(AES) versus generic Hadoop distributed file system (GH) [Colour
figure can be viewed at wileyonlinelibrary.com]

In the case of local cluster setup, the cost of machine (C) is a factor of initial cost of machine (ic), cost of maintenance
(cm), and cost of installations (ci)

C = ic + cm + ci. (18)

Total cost of ten machines (TC) = CX10.
Cost of maintenance (cm) depends upon cost of space (cs), cost of electricity (ce), cost of cleaning (cc), cost of furniture

(cf), and cost of personnel (cp)

cm = cs + ce + cc + c𝑓 + cp. (19)

Cost of installations (ci) is a function of cost of license (cl) and cost of expertise of personnel (cep)

ci = cl + cep. (20)

When we compare TC with the machine setup on AWS, we find that TC is strictly higher in many folds than the cost of 10
AWS instances. Hence, the cost of local cluster is much higher than the cost of AWS machines that are used over internet.
Moreover, there are no difficulties in installations, procurement, and maintenance. The AWS machines are released after
the completion of task. It allows considerable amount of savings.

6.4 Time comparisons: local cluster versus AWS
In this section, we have compared the time requirements for the local cluster setup and AWS machines.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

1324 CHAWLA ET AL.

The total time for AWS cluster setup Timeaws is the sum of time for installations (Ti), time for cluster setup (Tcs), and
time for performing the experiment (Tpe)

Timeaws = Ti + Tcs + Tpe. (21)

The time requirements for local cluster setup (Timelcs) depend on the time for procuring machines(Tpm), time for
installations on local cluster (Til), time for local cluster setup Tlcs, and time for performing the experiment (Tpe)

Timelcs = Tpm + Til + Tlcs + Tpe. (22)

It can thus be easily proved that Timelcs is greater than Timeaws as Tpm is usually at higher end as compared to the machine
allocations on AWS.

From the aforementioned mathematical equations, it is clearly depicted that the cloud-based framework for test data
generation is more efficient and cost effective than existing models.

7 RELATED WORK

Several studies have been carried out that anticipate increase in demand of cloud computing in the upcoming years,
which clearly reflects that there would be prospect of tremendous increase in utilization of infrastructure as a service
over internet.17,18 Software testing being one of the safest workload that can be put onto cloud as it does not involve any
business sensitive data.19 In spite of the aforementioned facts, very little work has been reported on cloud based software
testing frameworks. Therefore, in this paper, we have designed a framework for cloud-based testing with stronger focus
on QoS parameters such as fault detection capability, resource utilization, security, and costs.

In this section, related research work in the field of cloud-based testing has been exhibited. In our previous work,20

we have categorized cloud-based testing models into seven categories based on the adopted research model. The existing
cloud-based testing models have been analyzed and described in the work of Chana and Chawla.21 In our previous work,22

a hybrid particle swarm optimization (PSO)–genetic algorithm (GA)–based sequential automated TDG for object-oriented
programs was presented. Later, in our previous work,2 Apache Hadoop MapReduce and Pareto-optimal-based test data
generation framework was devised that facilitated efficient generation of test data with better coverage and fault detection
capability. The work presented in this paper is the extension of our previous work2 to help customers in making important
decisions such as selection of appropriate hardware configuration for the execution of specific job by providing a job
profiling and prediction mechanism. Additionally, it provides secure access and transfer of data by implementing TTP
based encryption mechanism. Transparent pricing model has also been provided to help the testing providers to charge
customers as per the usage of services. The proposed framework also takes care of the profit interests of testing providers
by only allowing the execution of the jobs that can generate good revenues for them. The effectiveness of the framework
has been tested empirically w.r.t time and cost and results have been presented in Section 6. Some of the existing popular
testing models is shown in the comparison Table 1 and is also described as follows.

D-Cloud is a cloud-based software testing environment used for testing of distributed systems.23 This environment uses
VMs with Eucalyptus private cloud environment. It facilitates fault tolerance testing by finding device faults with the help
of VMs. If we compare it with our testing framework, we can say that tester can execute the test jobs designed by him, but
test data will not be generated automatically without his intervention.

Virtualized-aware automated test service utilizes HP LoadRunner to generate load and automatically evaluates the
performance of SAP R/3 system operating in a Xen-based environments.24 It can however only supplements the service
lifecycle management system and only supports the testing of compatible applications. Ganon and Zilbershtein25 sug-
gested performance testing framework for network management system, which facilities testing of distributed system
containing VoIP private branch exchange networked through SIP. The authors have make use of emulation agents to
write application-level test cases.25 The authors have also illustrated that automatic execution of tests could be done in
considerable less amount of time. On the other hand, our proposed framework generates test data automatically using
soft computing technique. At the same time, it also uses Apache Hadoop MapReduce framework.

We also refereed to contribution made by Ciortea et al26 and Bucur et al27 toward Cloud9 development. They based
their efforts on parallel symbolic testing, which calibrates to large clusters of machines. Inspired by the research of
Ciortea et al,27 Bucur et al27 proposed a new symbolic environment model that includes all essential aspects of the POSIX
interface like synchronization, networking, processes, threads, IPC, and file I/O. Besides implementing the load balanc-
ing for automated testing of UNIX utilities, the aforementioned authors have primarily focused on devising the parallel

CHAWLA ET AL. 1325

TA
B

LE
1

C
om

pa
ris

on
ch

ar
to

fe
xi

st
in

g
cl

ou
d-

ba
se

d
te

st
in

g
fr

am
ew

or
ks

Te
st

in
g

Te
st

in
g

A
ut

om
at

ed
Te

st
Pa

ra
lle

liz
at

io
n

Te
st

B
ed

SU
T

Pe
rf

or
m

an
ce

Te
st

A
de

qu
ac

y
SL

A
Pr

ic
in

g
Pr

ed
ic

ti
on

Va
lid

at
io

n
Fr

am
ew

or
k

A
pp

ro
ac

h
D

at
a

G
en

er
at

io
n

Fr
am

ew
or

k
A

de
qu

ac
y

C
ri

te
ri

a
C

ri
te

ri
a

M
od

el
M

ec
ha

ni
sm

A
ut

om
at

ed
Ye

ti
Ra

nd
om

Ye
s

A
pa

ch
e

H
ad

oo
p

A
m

az
on

EC
2

Ja
va

.la
ng

Sp
ee

du
p

Bu
gs

de
te

ct
io

n
N

o
N

o
N

o
N

o
Te

st
in

g
VA

TS
Pe

rf
or

m
an

ce
N

o
/T

es
t

N
o

Xe
n

SA
P/

R3
Se

rv
ic

e
—

N
o

N
o

N
o

N
o

Te
st

in
g

us
in

g
ex

ec
ut

io
n

Pe
rf

or
m

an
ce

H
PL

oa
dR

un
ne

r
on

ly
D

-C
lo

ud
Fa

ul
tI

nj
ec

tio
n

N
o

/T
es

t
N

o
Q

EM
U

an
d

D
is

tr
ib

ut
ed

C
os

t;
—

N
o

N
o

N
o

N
o

Te
st

in
g

ex
ec

ut
io

n
Eu

ca
ly

pt
us

A
pp

lic
at

io
n

Ti
m

e
on

ly
C

lo
ud

-9
Sy

m
bo

lic
Ye

s
N

o
A

m
az

on
EC

2
U

N
IX

Sp
ee

du
p

Li
ne

N
o

N
o

N
o

N
o

Ex
ec

ut
io

n
ut

ili
tie

s
C

ov
er

ag
e

G
ri

dU
ni

t
Re

gr
es

si
on

N
o/

Te
st

N
o

G
rid

JU
ni

tT
es

t
Sp

ee
du

p
N

o
N

o
N

o
N

o
N

o
Te

st
in

g
ex

ec
ut

io
n

ca
se

Ex
ec

ut
io

n
on

ly
Jo

sh
ua

Re
gr

es
si

on
N

o
/T

es
t

N
o

Ji
ni

JU
ni

tT
es

t
Sp

ee
du

p
N

o
N

o
N

o
N

o
N

o
Te

st
in

g
ex

ec
ut

io
n

ca
se

Ex
ec

ut
io

n
on

ly
K

or
at

C
on

st
ra

in
t

Ye
s

G
oo

gl
e

N
o

G
oo

gl
e

O
bj

ec
tG

ra
ph

C
on

st
ra

in
t

N
o

N
o

N
o

N
o

Te
st

in
g

M
ap

Re
du

ce
A

pp
lic

at
io

n
V

is
ua

liz
at

io
n

sa
tis

fa
ct

io
n

N
M

S
Pe

rf
or

m
an

ce
N

o
N

o
N

o
Si

m
ul

at
ed

Sc
al

ab
ili

ty
;

N
o

N
o

N
o

N
o

N
o

Te
st

in
g

ne
tw

or
ks

Ti
m

e
Pr

ot
ot

yp
e

Ta
aS

of
Ta

aS
N

o
N

o
C

lo
ud

W
eb

El
as

tic
ity

N
o

N
o

N
o

N
o

N
o

O
ve

r
A

pp
lic

at
io

n
C

lo
ud

H
ad

oo
pU

ni
t

Re
gr

es
si

on
N

o/
Te

st
A

pa
ch

e
H

ad
oo

p
JU

ni
tT

es
t

Sp
ee

du
p

N
o

N
o

N
o

N
o

N
o

Te
st

in
g

ex
ec

ut
io

n
H

ad
oo

p
Lo

ca
lC

lu
st

er
ca

se
Ex

ec
ut

io
n

on
ly

Li
nd

a
et

al
U

ni
tT

es
tin

g
Ye

s
A

pa
ch

e
H

ad
oo

p
O

ne
O

pe
n

Sp
ee

du
p;

Li
ne

C
ov

er
ag

e
N

o
N

o
N

o
N

o
H

ad
oo

p
Lo

ca
lC

lu
st

er
So

ur
ce

Li
br

ar
y

C
ov

er
ag

e
Sp

ee
du

p;
C

ST
S

se
cu

re
O

ur
O

pe
n

So
ur

ce
ef

fe
ct

iv
e

re
so

ur
ce

Pr
op

os
ed

U
ni

tT
es

tin
g

Ye
s

A
pa

ch
e

A
m

az
on

EC
2

Li
br

ar
y

fil
e

U
til

iz
at

io
n,

Sc
al

ab
ili

ty
;

Fr
am

ew
or

k
H

ad
oo

p
si

ze
va

rie
d

%
In

cr
ea

se
Br

an
ch

co
ve

ra
ge

;
Ye

s
Ye

s
Ye

s
Ye

s
fr

om
25

6
M

B
to

in
A

PF
D

sc
or

e,
Fa

ul
td

et
ec

tio
n

51
2

G
B

%
in

cr
ea

se
in

co
ve

ra
ge

pe
rt

im
e

A
bb

re
vi

at
io

ns
:E

C
2,

el
as

tic
co

m
pu

te
cl

ou
d;

N
M

S,
ne

tw
or

k
m

an
ag

em
en

ts
ys

te
m

;S
LA

,s
er

vi
ce

le
ve

la
gr

ee
m

en
t;

SU
T,

so
ftw

ar
e

un
de

rt
es

t;
VA

TS
,v

irt
ua

liz
ed

-a
w

ar
e

au
to

m
at

ed
te

st
se

rv
ic

e;
Ta

aS
,T

es
tin

g
as

a
se

rv
ic

e.

1326 CHAWLA ET AL.

version of the symbolic execution engine, whereas we have developed the automated TDG using Apache Hadoop MapRe-
duce for object oriented software comprising more than one class. The implementation of our approach would be much
easier with the utilization of Apache Hadoop MapReduce, which can take care of tasks like fault tolerance, load balanc-
ing, and the coordination of the execution of parallel tasks in the distributed environment.28 Furthermore, our testing
framework has the advantage of providing user friendly interface for job submission. The transparent cost model that we
have developed is also cost effective as it charges the customers on the basis of cost per job.

Lastovetsky29 has made significant contribution in the field of parallel testing of computer software systems. He also
demonstrated regression testing for a distributed programming system in a parallel environment with a speed up of 7.7 on
two quad processor workstations. Lastovetsky29 and GridUnit30-32 have executed JUnit test cases in parallel. Both the tools
were based on master slave architecture where master controls the various slave nodes to execute test cases in parallel that
speeds up the testing process. Joshua used the Jini framework for parallel distribution of regression test suites over several
nodes, and the GridUnit employed grid computing. In the work of Parveen et al,33 the authors designed the HadoopUnit,
which carries out unit testing using JUnit for distributed execution framework. The HadoopUnit utilizes MapReduce
primitives for distributive execution of test cases over the cloud. The important files like testing tools and test cases had
been used by mapper node and uploaded to distributed file system. Thereafter, the master instructs the mapper nodes
for execution of test cases and the reducer collects the test case reports and stores them in the distributed file system.
An elementary case study33 done with HadoopUnit on a 150-node cluster has shown a speedup of 30x in execution time.
The aforementioned work emphasize that multiple nodes should be used for the execution of already generated test data.
However, it deficits the user support for automatic designing of intelligent test cases and other features of cloud-based
testing framework proposed by us.

Misailovic et al34 devised a new algorithm that accepts complex test inputs. This algorithm named as Korat algorithm
requires input by the user as imperative predicates and finitization that limits the test input size. Imperative predicates
and finitization are java methods, so the tester must have sound knowledge in java programming language, whereas, in
our strategy, there is no such condition from the user. The user is only required to upload the bytecode of the software,
and our strategy automatically generates test cases for all the testable methods and classes in an object oriented program.
Moreover, we have developed user-friendly interface for job submission and a transparent cost model that charges the
customers on per job basis. Oriol and Ullah7 designed YETI, which is a random testing tool over cloud in which test
programs are written in Java and .Net. The authors utilized the Apache Hadoop MapReduce for distributing the task of
test case generation over Amazon's EC2. However, Yeti needs more research to be done in the field of automatic mapping
of testing sessions over multiple nodes for more than one class and defining test adequacy criteria of test cases for better
detection of faults in random testing. On the contrast, our proposed strategy generates optimal test cases very easily and
efficiently in minimum time using branch coverage and fault detected in SUT as test adequacy criteria. This strategy can
enable automatic distribution of all the classes present in software over several nodes in a Hadoop cluster for parallel
generation of automatic test suites. Moreover, we have designed a complete framework that provides convenient user
interface for job submission and transparent cost model that charges the customers as per their jobs.

Yu et al proposed the novel model token as a service for the provision of testing resources to end users. The authors
utilized computing resources efficiently by devising their scheduling and dispatching algorithms. They have examined
the tolerance of the framework by raising load of test task and have also analyzed the total computing time by dispersing
into two components, ie, test task scheduling and test task processing time.35 On the other hand, we devised automatic
test data generation and we utilized Apache Hadoop MapReduce to inculcate features like load balancing, fault tolerance,
and scheduling of MapReduce jobs over Hadoop cluster.

Geronimo et al36 devised a strategy to generate test data using traditional GA with Hadoop Map Reduce. While we have
adopted the hybrid strategy employing the concept of PSO, GA, and Pareto optimality principle to identify best optimal
test suites in minimum possible time. The authors have only reported the strategy for automatic test data generation,
whereas we have designed the complete framework with several features.

In the work of Ferrer et al,37 the authors worked on evolutionary algorithm for multiobjective test data generation
problem. The objectives chosen by the authors were branch coverage and oracle cost. They compared direct multiob-
jective approach of test data generation with combination of a mono-objective algorithm and multiobjective test case
selection optimization. To accomplish this task, they utilized four state-of-the-art multiobjective algorithms and two
mono-objective evolutionary algorithms along with multiobjective test case selection based on Pareto efficiency. Their
findings indicated better values for oracle cost in case of direct multiobjective approach. Maximum branch coverage was
achieved with the second variant of multiobjective test data generation problem. On the contrary, our proposed frame-
work utilized multiobjective and Pareto optimality approaches for test data generation problem. In addition, we have also

CHAWLA ET AL. 1327

parallelized our proposed hybrid approach consisting of genetic and PSO algorithms over the cloud that helped us in
attaining cost-effective solution to the test data generation problem.

Maenhaut et al38 demonstrated the benefits of migrating the legacy software to the cloud. The authors investigated
and confirmed the long term benefits of migrating applications (such as nurse call systems, schedule planner, etc) for
managing medical appointments that are widely used within hospitals. The conclusion made by the authors is similar to
our research work in which we proved effectiveness of test data generation framework over cloud. Although our proposed
strategy works with different set of applications, our vision for the significance of working on cloud environment is same
as that of the work of Maenhaut et al.38

In the work of O'Shea et al,39 the authors developed methodology to generate automated test cases through the trans-
formation of design models, whereas our work is complete framework that not only assists in the generation of test data,
but also provides a mechanism for effective utilization of resources, protection of data and code of submitted jobs, maxi-
mization of profit of service providers, as well as customers. Drave et al40 presented virtualized test automation framework
implemented by DellEMC to maximize the use of underlying infrastructure for the existing test automation tools such as
Selenium, TestComplete, etc. In contrast to this, our work caters to cost-effective test data generation service using YARN
framework that manages and schedules resources rationally and leads to a reduction in the cost. The CSTS facilitates
users by providing them with the most appropriate cluster configuration parameters like number and type of VMs and
MapReduce configuration parameters like number of mappers and reducers per VM. It also provides solution for trust
establishment in cloud computing services by implementing security mechanism.

8 CONCLUSIONS

In this work, we have presented a CSTS that facilitates unit testing of the SUT with a stronger focus on QoS parameters
such as fault detection capability, resource utilization, security, and cost. Our proposed framework provides users with the
most valid and appropriate Hadoop and cluster configuration for better performance in terms of time and cost. Apart from
this, we have also designed a transparent pricing model that fulfills the expectations of customers and maximizes the net
profit of service providers. Experimental results conducted in cloud environment clearly demonstrate the effectiveness of
our framework. Thus, CSTS is comprehensive, cost effective, and efficient automatic software test data generation service
framework.

ORCID

Priyanka Chawla https://orcid.org/0000-0002-4135-0686

REFERENCES
1. Mell P, Grance T. The NIST Definition of Cloud Computing. National Institute of Standards and Technology. http://csrc.nist.gov/

publications/nistpubs/800-145/SP800-145.pdf. Last Accessed October 2017. 2011.
2. Chawla P, Chana I, Rana A. Cloud-based automatic test data generation framework. J Comput Syst Sci. 2016;82(5):712-738.
3. Sandhu R, Ferraioli D, Kuhn R. The NIST model for role-based access control: towards a unified standard. In: Proceedings of the 5th ACM

Workshop on Role-Based Access Control (RBAC'00); 2000; Berlin, Germany.
4. Patel H, Patel D. A review of approaches to achieve data storage correctness in cloud computing using trusted third party auditor.

In: Proceedings of the International Symposium on Cloud and Services Computing; 2012; Mangalore, India.
5. Rizvi S, Cover K, Gates C. A trusted third-party (TTP) based encryption scheme for ensuring data confidentiality in cloud environment.

Procedia Comput Sci. 2014;36:381-386.
6. Advanced Encryption Standard (AES). Federal Information Processing Standards Publication. https://csrc.nist.gov/csrc/media/

publications/fips/197/final/documents/fips-197.pdf. Last Accessed October 2018.
7. Oriol M, Ullah F. Yeti on the cloud. In: Proceedings of the 3rd International Conference on Software Testing, Verification, and Validation

Workshops (ICSTW); 2010; Paris, France.
8. Palanisamy B, Singh A, Liu L. Cost-effective resource provisioning for MapReduce in a cloud. IEEE Trans Parallel Distrib Syst.

2015;26(5):1265-1279.
9. Herodotou H, Babu S. Profiling, what-if analysis, and cost-based optimization of MapReduce programs. Proc VLDB Endow.

2011;4:1111-1122.
10. Verma A, Cherkasova L, Campbell RH. Profiling and evaluating hardware choices for MapReduce environments: an application-aware

approach. Performance Evaluation. 2014;79:328-344.
11. Rana OF, Warnier M, Quillinan TB, Brazier F, Cojocarasu D. Managing violations in service level agreements. In: proceedings of the 5th

International Workshop on Grid Economics and Business Models; 2008; Gran Canaris, Spain.

https://orcid.org/0000-0002-4135-0686
https://orcid.org/0000-0002-4135-0686
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf

1328 CHAWLA ET AL.

12. Yeo CS, Buyya R. Service level agreement based allocation of cluster resources: handling penalty to enhance utility. In: Proceedings of the
7th IEEE International Conference on Cluster Computing; 2005; Boston, MA.

13. Irwin DE, Grit LE, Chase JS. Balancing risk and reward in a market-based task service. In: Proceedings of the 13th International
Symposium on High Performance Distributed Computing; 2004; Honolulu, HI.

14. Linlin W, Garg SK, Buyya R. SLA-based admission control for a software-as-a-service provider in cloud computing environments. J Comput
Syst Sci. 2012;78(5):1280-1299. https://doi.org/10.1016/j.jcss.2011.12.014

15. Amazon Web Service. http://www.aws.org/instance. Last Accessed October 2018.
16. Amazon Web Service. http://www.aws.org/instance/price. Last Accessed October 2018.
17. Gartner Report. http://www.gartner.com/newsroom/id/2613015. Last Accessed October 2018.
18. Merill Lynch Report. http://readwrite.com/2009/11/25/merrill-lynch-cloud-computing. Last Accessed October 2018.
19. Fujitsu. Confidence in cloud grows, paving way for new levels of business efficiency. Fujitsu Press Release, November 2010. http://www.

fujitsu.com/uk/news/. Last Accessed October 2018.
20. Chawla P, Chana I, Rana A. Empirical evaluation of cloud-based testing techniques: a systematic review. SIGSOFT Software Eng Notes.

2012;37(3):1-9.
21. Chana I, Chawla P. Testing perspectives of cloud based applications. In: Mahmmood Z, Saeed S, eds. Software Engineering Frameworks

for Cloud Computing Paradigm. London, UK: Springer; 2013. http://www.springer.com/computer/communication+networks/book/978-
1-4471-5030-5

22. Chawla P, Chana I, Rana A. A novel strategy for automatic test data generation using soft computing technique. Front Comput Sci.
2015;9(3):346-363.

23. Banzai T, Koizumi H, Imada R, Hanawa T, Kanbayashi T, Sato T. D-cloud: design of a software testing environment for reliable distributed
systems using cloud computing technology. In: Proceedings of the 2010 10th IEEE ACM International Conference on Cluster, Cloud and
Grid Computing, IEEE Computer Society; 2010; Melbourne, Australia.

24. Gaisbauer S, Kirschnick J, Edwards N, Rolia J. VATS: virtualized-aware automated test service. In: Proceedings of 5th International
Conference on Quantitative Evaluation of Systems; 2008; St Malo, France.

25. Ganon Z, Zilbershtein IE. Cloud-based performance testing of network management systems. In: Proceedings of the IEEE 14th Interna-
tional Workshop on Computer Aided Modeling and Design of Communication Links and Networks CAMAD'09; 2009; Pisa, Italy.

26. Ciortea L, Zamfir C, Bucur S, Chipounov V, Candea G. Cloud9: a software testing service. SIGOPS Oper Syst Rev. 2010;43(4):5-10.
27. Bucur S, Ureche V, Zamfir C, Candea G. Parallel symbolic execution for automated real-world software testing. In: Proceedings of the

Sixth Conference on Computer Systems; 2011; Salzburg, Austria.
28. Apache Hadoop MapReduce. http://www.hadoop.apache.org/mapreduce. Last Accessed October 2017.
29. Lastovetsky A. Parallel testing of distributed software. Inf Softw Technol. 2005;47(10):657-662.
30. Kapfhammer GM. Automatically and transparently distributing the execution of regression test suites. In: Proceedings of the 18th

International Conference on Testing Computer Software; 2000; Berlin, Germany.
31. Duarte A, Cirne W, Brasileiro F, Machado P. GridUnit: software testing on the grid. In: Proceedings of the 28th International Conference

on Software Engineering; 2006; Shanghai, China.
32. Duarte A, Wagner G, Brasileiro F, Cirne W. Multienvironment software testing on the grid. In: Proceedings of the 2006 Workshop on

Parallel and Distributed Systems: Testing and Debugging; 2006; Portland, ME.
33. Parveen T, Tilley S, Daley N, Morales P. Towards a distributed execution framework for JUnit test cases. In: Proceedings of International

Conference on Software Maintenance; 2009; Edmonton, Canada.
34. Misailovic S, Milicevic A, Petrovic N, Khurshid S, Marinov D. Parallel test generation and execution with Korat. In: Proceedings of the

6th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering ESEC-FSE'07; 2007; Dubrovnik, Croatia.

35. Yu L, Tsai W, Chen X, et al. Testing as a service over cloud. In: Proceedings of the 5th IEEE International Symposium on Service Oriented
System Engineering; 2010; Nanjing, China.

36. Geronimo LD, Ferrucci F, Murolo A, Sarro F. A parallel genetic algorithm based on Hadoop MapReduce for the automatic generation of
JUnit test suites. In: Proceedings of the 2012 IEEE Fifth International Conference on Software Testing, Verification and Validation; 2012;
Montreal, Canada.

37. Ferrer J, Chicano F, Alba E. Evolutionary algorithms for the multi-objective test data generation problem. Softw: Pract Exper.
2012;42(11):1331-1362.

38. Maenhaut PJ, Moens H, Ongenae V, De Turck F. Migrating legacy software to the cloud: approach and verification by means of two
medical software use cases. Softw: Pract Exper. 2016;46:31-54. https://doi.org/10.1002/spe.2320

39. O'Shea D, Ortin F, Geary K. Virtualized test automation framework: a DellEMC case study of test automation practice. Softw: Pract Exper.
2018;49:329-337. https://doi.org/10.1002/spe.2658

40. Drave I, Hillemacher S, Greifenberg T, et al. SMArDT modeling for automotive software testing. Softw: Pract Exper. 2018;49:301-328.
https://doi.org/10.1002/spe.2650

How to cite this article: Chawla P, Chana I, Rana A. Framework for cloud-based software test data generation
service. Softw: Pract Exper. 2019;49:1307–1328. https://doi.org/10.1002/spe.2708

https://doi.org/10.1016/j.jcss.2011.12.014
http://www.aws.org/instance
http://www.aws.org/instance/price
http://www.gartner.com/newsroom/id/2613015
http://readwrite.com/2009/11/25/merrill-lynch-cloud-computing
http://www.fujitsu.com/uk/news/
http://www.fujitsu.com/uk/news/
http://www.springer.com/computer/communication+networks/book/978-1-4471-5030-5
http://www.springer.com/computer/communication+networks/book/978-1-4471-5030-5
http://www.hadoop.apache.org/mapreduce
https://doi.org/10.1002/spe.2320
https://doi.org/10.1002/spe.2658
https://doi.org/10.1002/spe.2650
https://doi.org/10.1002/spe.2708

	Framework for cloud-based software test data generation service
	Abstract
	INTRODUCTION
	APACHE HADOOP YARN
	Cloud-Based Software Test Data Generation Service: Problem Formulation
	SYSTEM MODEL
	ARCHITECTURE OVERVIEW
	Starter
	Optimizer
	Cost evaluator
	Yet-Another-Resource-Negotiator cluster
	Job execution flow

	EVALUATION AND DISCUSSION
	Experimental setup
	Performance evaluation
	File write and read operation

	Cost comparisons: local cluster versus AWS
	Time comparisons: local cluster versus AWS

	RELATED WORK
	CONCLUSIONS
	REFERENCES

